
Semantic Adaptation for Models of Computation
Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, Dominique Marcadet

Supelec Systems Sciences (E3S)
Computer Science Department

Gif-sur-Yvette, France
<firstname>.<lastname>@supelec.fr

Abstract—In the context of Model Driven Engineering, models
are the primary artifacts of the system development cycle. In
order to manage the complexity of systems, models are decom-
posed into models of simpler subsystems. A major difficulty is to
handle the heterogeneity of the different models of computation
used for modeling the subsystems. Through the example of
a power window system, this article presents an approach to
the specification of the semantic adaptation of data, time and
control between models of computation. The approach is sup-
ported by ModHel’X, a heterogeneous modeling and simulation
environment. The example is simple enough to be completely
described in the article, but rich enough to illustrate the matters
of (a) defining models of computation, and (b) specifying the
semantic adaptation between models of computation.

Keywords-model driven engineering; model of computation;
heterogeneous modeling; model semantics;

I. INTRODUCTION

Modeling is the most common way of handling complexity
through abstraction. A model of a system is a simplified
representation of the system which keeps only the features
which are important for a given goal. When building a model
of a system, one uses a paradigm or a modeling technique
which suits the modeling need. Therefore, different parts of a
system may be modeled using different modeling languages,
leading to a heterogeneous model of the system [1].

In this article, we are interested in the computation of the
behavior of the model of a system, which may be called
a “simulation” of this behavior. When modeling an existing
system, such a simulation is useful for computing properties of
the system without making a real experiment. When modeling
a system under design, the simulation allows an early validation
of the design of the system, by running tests on the model of
the system for example.

However, as we explained in [2], it is difficult to define the
behavior of heterogeneous models, first because it requires to
precisely define the semantics of each one of the modeling
languages used in the model, and second because it requires to
define how information is interpreted at the boundaries between
the models of the heterogeneous subsystems. Indeed, different
modeling paradigms may use different structures for data (ar-
rays, samples, functions), different notions of time (continuous,

This work has been performed in the context of the
EDONA project (http://www.edona.fr/)

and partially financed by the
System@tic Paris-Région Competitiveness Cluster

(http://www.systematic-paris-region.org)

discrete, periodic, triggering), and different ways of combining
the behavior of the elements of a model (sequential, concurrent,
synchronous, with blocking communications). These semantic
components of a modeling paradigm define its underlying
Model of Computation (MoC). In this work, we consider the
heterogeneity of the modeling languages to be equivalent to
the heterogeneity of the models of computation.

In this article, we briefly introduce ModHel’X [3], a platform
for heterogeneous modeling and simulation, and we show on a
concrete case study (a) what heterogeneous model composition
is, (b) how heterogeneous model composition is performed in
ModHel’X and (c) how ModHel’X compares to other tools.
The example of a power car window is used throughout the
paper; it is inspired by a case study [4] which was conducted
using tools by The MathWorks. This example helps us illustrate
how the semantic adaptation between heterogeneous models
can be broken down into three adaptation primitives – the
adaptation of data, the adaptation of control and the adaptation
of time – which is our main contribution in this paper.

Section II introduces the power window system used as an
example. Section III presents ModHel’X, and then Section IV
shows in details how the power window system is modeled
using ModHel’X, with a special focus on the mechanisms
which allow the composition of heterogeneous models. We
discuss the results obtained on this case study and we compare
with different modeling approaches in Section V.

II. THE POWER WINDOW SYSTEM

In the example power window system, the user has a three-
position button (up/neutral/down) to control the window. The
stable position of the button is neutral. When the user moves
the button in the up or down position, the window goes up or
down. If he/she briefly switches the button to the up or down
position, and then releases it, the window goes up or down
automatically until fully closed or opened. When the window
is going up, if it encounters an obstacle, it goes down for two
seconds so as to get away from the obstacle, and then stops.

The model of the global system is shown on Figure 1. The
components of this system, in dark gray on the figure, are
designed by different people from different technical domains
(electronics, control science, mechanics, etc.) who use different
modeling languages and tools. The role of the components in
lighter gray is to feed the model with simulation scenarios and
to observe its behavior, display it and check it against what is
expected.



Test
scenario

player

Button

Controller

endstop
obstacle

cmd

motor

Electro-
mechanical
subsystem

cmd_motor

obstacle

endstop
obstacle

position Monitor

Fig. 1. Overview of the system. Lines are connections via the bus.

Stop

Move up

Emergency
down

Move down

Manual
move up

Auto
move up

Auto move
down

Manual
move down

cmd_up/motor_up

cmd_down/motor_down

after 200ms

cmd_neutral

cmd_neutral / motor_stop

win_obstacle / motor_down

cmd_up ∨ cmd_down ∨ win_closed / motor_stop

after 2s / motor_stop

after 200ms

cmd_neutral

cmd_neutral / motor_stop

cmd_up ∨ cmd_down ∨ win_opened / motor_stop

Fig. 2. Finite state machine that specifies the behavior of the window controller.

cm
d_

m
ot

or
ob

st
ac

le

ob
st

ac
le

po
si

tio
n

en
ds

to
p

×mot

×obs

≥ 0

×

+

< mot

∑

×

≤ 0
≥ H

motor on

to
rq

ue

obstacle force

Fig. 3. Dataflow model for the electro-mechanical behavior of the window.



This global model represents the subsystems and their
interconnection. In a car, communication between components
is multiplexed onto a bus which is represented by the set of
lines which connects the controller, the button, and the electro-
mechanical subsystem. In the following paragraphs, we detail
the models of the controller and of the electro-mechanical
system.

The simplified behavior of the controller is given on Figure 2
as a state machine. Since some actions have to be taken after
a given delay (if the user releases the button quickly then
the raising or lowering of the window is automatic), the state
machine representing the controller has timed transitions that
fire automatically after a given delay.

A realistic model of the electro-mechanical subsystem of the
power window would probably involve modeling languages
specific to electrical and mechanical modeling. For the sake
of simplicity, we use a single dataflow model which simulates
the behavior of the whole electro-mechanical subsystem. This
model receives on its cmd_motor input the information about
the command of the motor (stopped, forward or reverse). When
the motor is on, this subsystem calculates the resulting force
applied to the window, taking into account the presence of
a potential obstacle (obstacle input). If the resulting force is
less than expected (i.e. less than the force delivered by the
motor), an obstacle output message is sent onto the bus. The
subsystem also calculates the current position of the window,
and simulates the behavior of end stops on the path of the
window. The dataflow model for this subsystem is presented
on Figure 3. On this figure, mot is the value of the vertical
force produced by the motor, obs is the value of the force
produced by the obstacle, and H is the height of the window.

III. MODHEL’X

To complete this case study, we have used ModHel’X for
two different tasks: (1) modeling the behavior of the different
components of the power window system using different
modeling paradigms and (2) assembling the models of the
components to obtain a model of the whole system and simulate
its behavior. A global description of ModHel’X can be found
in [5]. The present paper focuses on the mechanisms for
assembling the models of the components, and contains only
a summary of the notions required to understand the example.

At the core of ModHel’X is a generic meta-model for de-
scribing the structure of models, and a generic execution engine
for interpreting such structures. In ModHel’X, the interpretation
of a model by the generic execution engine is directed by a
model of computation (MoC). A model of computation is a set
of rules for combining the behaviors of a set of components
into the behavior of a model. Synchronous data-flows, state
machines and continuous time [6] are examples of models of
computation. In ModHel’X, a model of computation dictates
the rules for scheduling the observation of the components of
a model, for propagating values between components, and for
determining when the computation of the reaction of a model
to an input is complete. The concept of model of computation
is essential because it allows ModHel’X to support different

modeling languages, and to execute heterogeneous models
i.e. models composed of sub-models described using different
modeling languages. In order for ModHel’X to support a given
modeling language, an expert of this language must describe
the corresponding model of computation. Once described in
ModHel’X, this model of computation is used by the generic
execution engine in order to interpret any model described
using the chosen modeling language.

A. Struture elements

The ModHel’X meta-model may be seen as a very abstract
modeling language that allows one to describe concrete
modeling languages (models of computations), and to create
models.

The elementary unit of behavior in ModHel’X is the block.
The elements X, Y, A and B on Figure 4 are blocks. A block
is defined (a) by its interface which is composed of pins, and
(b) by an update operation which allows the observation of
the behavior of the block through its interface. To observe the
behavior of a block, input information is put on its pins, and its
update operation is executed. In response, the block reads the
data available on its pins and updates its outputs accordingly.
A token is an elementary unit of information which can be
observed on a pin.

Blocks can be assembled by defining relations between their
pins. A composite block is a block which is composed of a
set of blocks with relations between their pins (see figure 4).
Its interface is composed of some of the pins of its blocks. A
composite block defines a structure as a graph of interconnected
blocks. In order to define the semantics of this structure, one
must specify the model of computation used to drive the graph.
A composite block associated with a model of computation
forms a model. The blocks appearing in the structure of a
model may be atomic blocks, whose behavior is defined outside
ModHel’X (their update operation is opaque); composite blocks
made of other blocks; or interface blocks, which allow the
behavior of a block to be defined by a ModHel’X model.

Interface blocks are a key element of the meta-model
of ModHel’X because they provide support for hierarchical
composition of models and heterogeneity. An interface block
embeds a model, and allows its use as a block in another
model. Like any other block, an interface block has a set of
pins and an update operation, but it also possesses: (i) an
internal model, which defines the behavior of the block; (ii) a
set of internal relations, which connect the pins of its interface
to the pins of its internal model; (iii) two operations: adaptIn
and adaptOut. The internal relations of the interface block along
with its adaptIn and adaptOut operations define the semantic
adaptation performed by the interface block.

The internal model may use a model of computation
that is different from the (external) one used by the model
containing the interface block. As such, the interface block
acts as an adapter for its internal model with respect to the
(external) model in which it is used. The interface block IB on
Figure 4 is used to assemble two models called “model” and
“internalModel”, which have different models of computation,



model

C

compositeBlock MoC

X IB

IB

Y
M

internalModel

C

internalCompositeBlock

internalMoC

A B

Fig. 4. Hierarchical composition using an interface block.

respectively “MoC” and “internalMoC”. The model resulting
from the composition is therefore a heterogeneous model.
Hierarchy through interface blocks is the structural mechanism
used to compose heterogeneous models in ModHel’X.

The following section explains how heterogeneous models
obtained by hierarchical composition using interface blocks are
executed by ModHel’X according to the interpretation rules
defined by the MoCs, and to the semantic adaptation specified
in the interface blocks.

B. Execution algorithm

To compute the behavior of a model made of elements which
are themselves modeled using different modeling paradigms,
ModHel’X relies on a black box approach. The behavior of a
block may be described by an internal model, but it can only
be observed at its interface, i.e. on its pins, by using the update
operation (see section III-A). In this approach, computing the
behavior of a model consists in (a) observing the behavior of
the blocks which are part of its structure and (b) composing
these observations according to the set of rules of the MoC
used for the model.

The general algorithm of ModHel’X consists in computing
a series of snapshots. The snapshot operation computes an
instantaneous observation of a model. The algorithm first
determines the time of the current snapshot, then schedules a
block for update, propagates data to its pins, updates the block
and then propagates new data from the block to their destination.
The schedule-update-propagate loop is repeated until the status
of all pins is known and the snapshot is completely determined.
Computing a snapshot can be considered as computing the
fixed point of the combination of the behavior of the blocks
(update operation) according to the rules of the MoC (schedule
and propagate operations).

This algorithm is generic with respect to the different
modeling paradigms because the scheduling and the prop-
agation operations are defined specifically by each model of
computation. Therefore, the choice of the order in which blocks
are observed and the meaning of relations between pins are
given by the models of computation. Examples of models of
computation described in ModHel’X are given in section IV-A.

Let us review how ModHel’X handles time, and how an
interface block handles heterogeneity.

1) Time handling: To enable the use of various clocks in
different parts of a system and of various notions of time in
different models of computation, ModHel’X relies on a model
of time inspired by that of the MARTE UML profile [7], [8].
It is therefore possible in ModHel’X to have MoCs where the
notion of time is reduced to “now”, as well as MoCs with
durations between clock instants and MoCs where elapsed time
can trigger behaviors.

Since a snapshot is an instantaneous observation of a model,
time is constant during a snapshot, and the date of a given
snapshot must be computed according to each clock of the
model. Time computation relies on relations between clocks
and on time constraints, which may be posted by blocks to
constrain the instant of their next update with respect to a
given clock. For instance, constraints can be used to trigger
periodic behavior by posting a request for an update at the
current time plus the period of the behavior. It can also be
used for more complex features such as timers or watch dogs.
Examples of use of time constraints are given in section IV-B
about interface blocks.

2) Heterogeneity and interface block adaptation: An inter-
face block is scheduled by its external MoC and receives and
produces data in it. However, it has to schedule, feed data to,
and get data from its internal model according to the internal
MoC. Therefore, an interface block performs an adaptation
between the semantics of its internal and external models of
computation. This adaptation has three aspects:

• adaptation of data, since different models of computation
may have different data structures for the tokens;

• adaptation of time, since there are numerous notions of
time, from the sequential numbering of discrete instants
to continuous time with a notion of duration between
instants;

• adaptation of control, which allows a subsystem to be
observed at a different rate than the system in which it is
embedded.

Adaptation of data is performed by the adaptIn and adaptOut
operations specific to interface blocks. AdaptIn uses the
valuation of the pins of the interface block to compute status
information and a valuation of the pins of the internal model.
AdaptOut uses status information and the valuation of the pins



of the internal model to give a valuation of the pins of the
interface block.

Adaptation of time relies on the relations between the clocks
of the different models for computing the date of the current
snapshot on each of these clocks.

Adaptation of control is the most complex form of adaptation.
It must trigger observations of the internal model exactly at
instants requested by the internal MoC. For instance, if a model
is designed to work with a period of 20 ms, it must be updated
exactly and only at instants with timestamps separated by 20 ms.
If such a model is embedded in a model which needs to be
updated only in response to sporadic events, it is mandatory
to update the subsystem every 20 ms even when there is no
event for the embedding model, and it is mandatory not to
update the subsystem when the embedding model is updated
to process an event which occurs at an instant which does not
belong to the 20 ms clock.

ModHel’X supports adaptation of control by allowing blocks
to post time constraints on their next update, and by letting
interface blocks choose to update or not their internal model
according to an adaptation policy. This choice is based on the
interface block’s available inputs, state and current time.

In summary, an interface block performs data, time and
control adaptation between two models of computation. Next
we show how these operations combine with the general
execution algorithm of ModHel’X.

3) Hierarchical execution: Let us now explain how a
heterogeneous model like the one on Figure 4 is executed
using the general algorithm of ModHel’X. The focus is set on
the operations of the interface block so as to show how the
execution flow runs hierarchically through all the layers of a
heterogeneous model.

When ModHel’X computes a snapshot of the top-level model,
the associated MoC begins by computing its own current date
and then it collects the possible time constraints of all the blocks
of the model. When the MoC collects the time constraints of an
interface block such as IB, this interface block may first emit
its own time constraints, but it also triggers the computation
of the current time of its internal MoC. The internal MoC,
in turn, computes its own current date and collects the time
constraints successively on each of the blocks of the internal
model. In this way, the computation of the current time runs
through the whole hierarchy of a heterogeneous model.

After computing the date, the MoC of the top level model
enters the loop which computes the global observation of the
model, i.e. the snapshot. In this loop, the MoC schedules a
block to update, updates the chosen block and then propagates
the observed information to other blocks of the model structure.
This loop ends when the snapshot is complete. As specified
earlier, the scheduling and propagation rules depend on the
semantics of the MoC. In the same way, the criteria for
determining if the snapshot is complete also depend on the
semantics of the MoC. Concrete examples of execution rules
are presented in section IV. The sequence diagram of Figure 5
shows the update of the interface block IB. When IB is updated
by its external MoC, it uses its adaptIn operation to adapt the

Fig. 5. Update of “IB”

data present on its pins and to provide the adapted data to its
internal model. Then, IB has to determine if, according to its
adaptation policy (doInternalUpdate operation), an update of
its internal model is necessary. If so, it delegates the update
of its internal model to the internal MoC. To compute an
observation of the internal model, the internal MoC uses the
same schedule-update-propagate loop as the MoC of the top-
level model, but it applies its own scheduling and propagation
rules. Last, the interface block has to adapt the data produced
by its internal model using its adaptOut operation so that it
can be used back into the top-level model.

This illustrates how interface blocks allow the hierarchical
execution of the generic algorithm of ModHel’X by delegating
operations to their internal model, and how they handle
heterogeneity through their specific adaptation rules. Any
number of models can be composed hierarchically by pairs
using interface blocks. The execution flow runs through all the
layers, and semantic adaptation is performed at each border
between two models by the corresponding interface block. In
the next section, we present how this applies to the concrete
case of the power window example.

IV. THE POWER WINDOW MODEL

Since ModHel’X allows the combination of models which
obey different models of computation, it is possible to choose
the most appropriate MoC for modeling each subsystem of our
example, and to combine them to obtain a global model. We
describe which MoC we use for each model in section IV-A
and we determine how to compose the different heterogeneous
models in section IV-B.

A. Models of computation at play

The controller is modeled using a timed finite state ma-
chines (TFSM) MoC, as discussed in Section II. The electro-
mechanical window subsystem is modeled using the Syn-



chronous Data Flow (SDF) MoC. The bus connecting the
different parts of the system can be considered as a medium for
sending time-stamped messages, whose semantics is captured
by the Discrete Event (DE) MoC. In the remainder of this
section, we introduce these models of computation and show
how they are implemented in ModHel’X.

1) Timed Finite State Machine Model of Computation
(TFSM): The TFSM model of computation gives the semantics
of finite state machines with timed transitions, as described in
Section II.

In ModHel’X, states and transitions are represented by
blocks, which are the elementary units of behavior. Transitions
are composite blocks containing a block for the guard and a
block for the action performed by the transition. The TFSM
MoC maintains a reference to the current state of the automaton.
When performing a snapshot, the MoC interprets the structure
of the model by scheduling the guards of the transitions which
leave the current state. If a guard is satisfied (i.e. produces
true when updated), the MoC schedules the associated action
which produces the tokens to be provided as outputs of the
TFSM model during its update. The MoC then sets the new
current state to the target state of the transition. When entering
a state with timed outgoing transitions, the TFSM MoC issues
a time constraint for its next update at the earliest dead-line
of the timed transitions. Therefore, the timed transition will
be triggered, even if no input event is available for the state
machine. The exact details depend on the notion of time in the
embedding model and will therefore be given when dealing
with interface blocks in section IV-B.

The representation of the model of the controller state
machine using ModHel’X blocks is not given in this paper
because it is meant for machine use only. Designers use the
usual graphical syntax for automata shown on figure 2.

2) Synchronous Data Flow Model of Computation (SDF):
SDF [9], [10] gives the semantics of graphs composed of
blocks that exchange flows of data tokens through pins. There
may be several data tokens on a pin at the same instant, and
the blocks always produce or consume the same number of
tokens on a given pin each time they are updated (hence the
synchronous nature of SDF). Each pin has a data rate, and
a block may be updated only when all its input pins have at
least as many data tokens as their data rate. During an update,
a block consumes the specified number of tokens on its input
pins and produces the specified number of tokens on its output
pins.

Although static scheduling of SDF models is possible,
ModHel’X uses a dynamic scheduler. First, the MoC determines
which blocks have all their inputs available in sufficient
quantity. These blocks are updated, and the tokens produced
are propagated to the input pins which their output pins
are connected to. This schedule-update-propagate behavior
is repeated until the number of data tokens on each pin comes
back to its initial value. In order to minimize the number of
updates necessary to come back to the initial number of tokens
on each pin, when several blocks are ready to be updated,
the MoC schedules the one which has been updated the least

number of times since the start of the snapshot.
The SDF model of the electro-mechanical subsystem of the

power window is shown on Figure 3. The components of this
model are atomic blocks, which are blocks whose behavior is
defined using tools external to ModHel’X.

3) Discrete Events Model of Computation (DE): DE [6] is
used in the example to model the exchange of messages on a
bus. Each message has a value and a time-stamp, and if several
messages have the same time-stamp, they are delivered in a
sequence of microsteps (determined by a topological ordering
of the blocks), so that the overall observation at that time is
causal and deterministic. The scheduling algorithm for DE in
ModHel’X relies on a global event queue. At a given instant,
the MoC looks for all the events ei with the smallest time tag
tnow and advances the current time to tnow. It then looks for the
blocks b j which are the targets of the ei events and schedules
one of the minimal elements among the b j according to the
topological ordering of the blocks. The choice of a minimal
element guarantees that events produced at tnow during the
update of a block can be processed by their target at tnow in
only one update operation. If there are loops in the connection
graph of the model, there may not be any minimal element
according to the topological order. Our implementation of DE
in ModHel’X allows loops if they are not instantaneous, i.e.
if at least one block in the loop produces an event with a
timestamp in the future. The snapshot is complete when no
event with time-stamp tnow remains in the queue.

Building the DE model shown on Figure 1 using ModHel’X
is straightforward. The controller and the electro-mechanical
subsystems are modeled by interface blocks which embed
the corresponding TFSM and SDF models. The light gray
components are atomic blocks used for feeding the model
with a simulation scenario and observing the outputs of the
simulation. The next section describes the semantic adaptation
performed by the two interface blocks.

B. Interface blocks at play

We saw in section III-B that interface blocks perform
semantic adaptation according to three aspects: data, time and
control. For instance, between DE and SDF, one has to adapt
data from events (in DE) to samples (in SDF). Regarding time
adaptation, SDF has no notion of time beyond the succession
of data samples, while DE puts a time-stamp on each event. A
simple and useful adaptation of time between SDF and DE is
to use a sampling period T to compute the time in DE from the
succession of instants in SDF. The SDF model is considered to
produce data instantaneously from its inputs, but it is updated
every T units of time in DE. This adaptation of time must
be consistent with the adaptation of control, so when an SDF
model is embedded in DE, control must be adapted so that the
SDF model is updated periodically, even when the DE model
has no event to process.

The adaptation is to some extent specific to the models
involved. In the DE/SDF example above, the sampling period
is specific to a given application. Therefore one cannot build a
universal DE/SDF interface block, completely independent of



cm
d

en
ds

to
p

ob
st

ac
le

m
ot

or

Model of the
controller

cmd_neutral

cmd_up

cmd_down

win_opened

win_closed

win_obstacle

motor_stop

motor_up

motor_down

TFSM

0

-1

1

1

-1

1

0

1

-1

Fig. 6. DE/TFSM interface block used in the power window model. Fig. 7. Example of DE/TFSM adaptation.

the models involved. However, sampling is a general adaptation
policy which can be implemented in a parameterized interface
block. Such adapters are generic, and are parameterized by
the designer when used in a model. When a more specific
adaptation is necessary, it is still possible to build an adapter
specifically tailored to a given pair of models. In the following,
we present the two parameterized interface blocks involved in
the power window model.

1) DE/TFSM interface block: The DE/TFSM interface block
allows the use of finite state machines as DE blocks. In input,
DE events are translated into TFSM events. TFSM actions
are translated into DE events in output. ModHel’X relations
between pins of the outer DE block and pins of the inner TFSM
model are used to define correspondence relationships between
DE events and TFSM events and actions. So, this adapter is
generic and can easily be adapted to various situations by
creating the required relations.

However, a DE event carries a value whereas a TFSM event
or action has no associated value. Therefore, a given DE event
may trigger various TFSM events, depending on the carried
value. To account for this, a given input pin of the external
DE block may be connected (via relations) to several input
pins of the internal TFSM model, as in a demultiplexer. To
discriminate between several possible TFSM events for a DE
event, each relation has a parameter called “AssociatedValue”.
When a DE event is received on an input pin of the interface
block, the adaptIn operation tries to match the carried value
with the AssociatedValue of the corresponding relations. A
TFSM event is created when one of them matches. To be
able to sort out between errors and voluntary ignorance of
values when none of the “AssociatedValue” matches, we use a
parameter called “IgnoredValues”. The solution is similar for
the outputs.

Figure 6 shows the instance of the DE/TFSM interface block
which embeds the model of the controller in the model of the
power window system. The figure shows the “AssociatedValue”
parameters used for multiplexing and demultiplexing DE values.
Figure 7 illustrates the adaptation performed by the DE/TFSM
interface block on example data. The left part of the figure
shows how an event on the “cmd” DE input pin is interpreted
and translated into a “cmd_up” or a “cmd_neutral” TFSM event

according to its value (respectively 1 and 0 in this example).
The right-hand side of figure shows how the “motor_up” and
“motor_stop” TFSM events are translated into a “motor” DE
event with value 1 or 0 respectively.

When dealing with non-timed transitions only, the behavior
of the TFSM model is totally controlled by the surrounding DE
model. When a DE event occurs, the interface block creates a
TFSM event that may fire a transition. Consequently, the TFSM
changes state and may trigger an action. In turn, the action
may generate a DE event, at the same time as the original
(incoming) DE event. The reaction of the state machine to an
event is considered as instantaneous, and the interface block
just has to memorize the time of the current DE event, so as
to use it as a timestamp if the finite state machine triggers an
action.

However, when dealing with timed transitions, the TFSM
model may trigger actions at instants when there is no incoming
DE event. Therefore, when the state machine enters a state
which has outgoing timed transitions, the interface block must
request (via time contraints) a snapshot at the earliest time
at which one of these transitions may occur. In this way,
the interface block controls the occurrence of snapshots that
account for timed transitions. If a timed transition fires, an
action may be produced by the TFSM model. In this case, the
timestamp of the associated DE event has to be calculated by
the interface block. To do so, the interface block keeps track
of the DE time at which the finite state machine has entered
the current state. When a timed transition occurs, the interface
block adds the DE time at which the current state was entered
to the delay associated with the transition in order to get the
DE time at which the transition occurs.

This pattern of semantic adaptation is interesting because
timed transitions have no meaning per se in TFSM since time in
this MoC is just the discrete series of instants at which the state
machine receives events. Timed transitions in TFSM refer to
durations between instants of the clock of the embedding model.
The semantic adaptation of time therefore contributes to the
meaning of the TFSM model by synchronizing the clocks in DE
and in TFSM, and cannot be inferred automatically unless an
implicit global time reference is assumed, which is not the case
in ModHel’X. By requiring an explicit adaptation, ModHel’X



m
ot

or
ob

st
ac

le

en
ds

to
p

ob
st

ac
le

po
si

tio
n

Model of the
electro-mechanical

subsystem

Sample period = 1

SDF

cmd_motor

cmd_obstacle

endstop

obstacle

position

Fig. 8. DE/SDF interface block used in the power window model.

Fig. 9. Example of DE/SDF adaptation

allows for greater flexibility: it is for instance possible to have
two sub-models that use the DE MoC in the same ModHel’X
model, and for which time does not run at the same speed.
This is related to the multi-form nature of time in MARTE:
one DE sub-model could count time as the angular position
of some rotating shaft, while the other would count time in
milliseconds of physical time.

2) DE/SDF interface block: The DE/SDF interface block
allows the use of SDF models as DE blocks. It adapts between
a world of events occurring at instants defined on a continuous
clock and a world of sampled signals. In SDF, the notion of
time is reduced to that of the index of a sample. The mapping
between signal samples and dates in DE can be built according
to a sampling period. If T is the sampling period used by the
interface block, time T elapses in DE between the consumption
or production of two successive tokens in SDF. The sampling
period is a parameter of the general-purpose DE/SDF sampling
adapter.

Even when no event occurs in the DE model, the inner SDF
model must be updated at its sample rate. Therefore, a snapshot
of the whole model must be computed at least every T in DE
time. The DE/SDF interface block uses time constraints in
order to request periodic snapshots. Conversely, when an event
occurs in DE at a time which does not match a sampling instant
of SDF, the interface block doesn’t update the internal model.
To account for this in the data adaptation performed by this
DE/SDF adapter, DE events are considered as notifications of
value changes. Therefore, each time a DE event occurs, the
interface block memorizes its value as the new value that will
be used every T until an event changes the value of the signal
again. In output, each data sample is compared to the previous
one, and when they differ, a DE event is produced with the
new value at the current DE time.

This semantic adaptation pattern illustrates the cross-
influence of the data, time and control adaptation aspects.
The implicit periodic nature of samples in the SDF model
makes elapsed time create control. Changes in the value of the
signals computed by the SDF model create events, and therefore
control in DE. Although SDF is described as a data-triggered
MoC (components are activated when data is available), the
interface block updates the SDF model on a time-triggered
basis because of the sampling rate.

Figure 8 shows the instance of the DE/SDF interface block
which is used in the power window system example. This
interface block wraps the SDF model of the electro-mechanical
subsystem for use in the DE global model of the power window
system. The sample period T of the DE/SDF interface block
is set to 1 so that the SDF model is updated every unit of
the DE time. Figure 9 illustrates the adaptation performed by
the DE/SDF interface block on example data. The left part
shows how “motor” events are taken into account as changes
of the value of the “cmd_motor” input pin of the inner SDF
model. These changes are seen by the SDF model only at the
next sampling time. The right part of the figure shows how the
changes of value of the “obstacle” SDF output are translated
into DE events.

V. DISCUSSION AND RELATED WORK

Several categories of approaches, like model transformation,
language composition or model composition, address the
problem of modeling a system composed of heterogeneous
components. A classification and a comparison of these
approaches is proposed in [2]. In the following, we illustrate the
differences between ModHel’X, Ptolemy II [6], Metropolis [11]
and the MATLAB/Simulink toolchain by The MathWorks with
respect to the way adaptation between MoCs is performed.

Ptolemy II is one of the first approaches for model com-
position. It supports a wide range of MoCs that may be
combined with each other to form heterogeneous models. In
ModHel’X, we propose an extension and a generalization of
the solutions which exist in Ptolemy. One of our contributions
regards the adaptation rules at the boundary between two
heterogeneous models. In the power window example, the
SDF model embedded in the global DE model must have data
on all its inputs to be able to compute its behavior (this is
the semantics of SDF). Since the semantics of DE doesn’t
guarantee synchronous data feeding, a semantic adaptation has
to be performed. In Ptolemy, this adaptation is coded in the
kernel and forbids the firing of the SDF model unless the DE
model provides data on all its inputs [9]. The modeler has
either to rely on that default adaption and design its system
accordingly, or to explicitly add adaptation blocks into the
models themselves. For instance, samplers could be added to
the DE model in order to feed the SDF model with the value



of the last event. Such artifacts render models less reusable
and more difficult to understand. In ModHel’X, the explicit
adaptation is insulated from the models and encapsulated into
interface blocks.

Another innovation in ModHel’X lies in the handling of
different notions of time and multiple control clocks. This
issue has been extensively studied in the domain of hardware
synthesis. Synchronous languages (see [12], [13]) like Lustre,
Esterel and Signal use an abstract logical time, which is only
a series of events on a clock, and introduce the notion of
multiform time. Other approaches, like Lucid Synchrone [14],
have explicit support for specifying multi-clock systems.
Ptolemy supports heterogenous notions of time, however, it has
a hierarchical structure for time scales in which the top-level
model drives the time in the models of its components. In
contrast, ModHel’X relies on independent clocks with dynamic
constraints between their instants, which allows deeply nested
blocks to request an update. It also relies on the filtering of
updates by interface blocks to avoid the observation of blocks
at instants that do not exist on their activation clock. However,
the stricter separation of time, control and data in ModHel’X
makes it more difficult to handle modal models as efficiently
as in Ptolemy [15] for the moment.

Metropolis [11] is a heterogeneous system design envi-
ronment which relies on the separation of communication
and computation concerns. In a way similar to Ptolemy and
ModHel’X, it defines an abstract semantic framework for
defining models of computation and communication. Thanks
to a formal semantics based on trace algebras, Metropolis can
be used both for formal verification and for simulation and
code generation. It is difficult to compare how the adaptation
between heterogeneous models is performed in Metropolis and
in ModHel’X because of two main differences:

1) Metropolis models are made of communicating processes,
while ModHel’X has been specifically designed to
support the broadest possible set of MoCs, including
MoCs for communicating processes but not only, has
shown by the example in this paper. As a counterpart,
ModHel’X is not able to provide as many analysis
methods for models as Metropolis.

2) In ModHel’X, the semantic adaptation between MoCs
is made at the border between hierarchical models
while Metropolis allows the use of adapters to connect
heterogeneous processes at the same level of a model.
This means that, while in ModHel’X communication
is defined uniformly by the MoC for all ports of all
blocks of a model, in Metropolis custom adaptation can
be made on each port of a process. As such, Metropolis
shares similarities with BIP [16], in which different
communication and synchronization operators can be
mixed to connect components described as finite state
machines.

As a conclusion, ModHel’X and Metropolis have been designed
for very different purposes. However, even if they support
adaptation between heterogeneous elements of a model in

different ways, both Metropolis and ModHel’X support the
adaptation of data and control. The support of the adaptation
of time is not very detailed in Metropolis but the trace-based
semantics on which it relies theoretically allows the use of
multiple clocks in a model.

Regarding the MATLAB/Simulink toolchain, a power win-
dow case study, available on The MathWorks’ website [17],
illustrates heterogeneous model composition using Simulink
(SDF-like) and Stateflow (TFSM-like) among other tools. The
semantic adaptation between a Simulink and a Stateflow models
can be specified explicitly using functions and truth tables.
However, all MoCs cannot be composed in the same way. For
instance, using a Simulink (SDF-like) model into a SimEvents
(DE-like) model requires different adaptation artifacts such as
event translation blocks [18]. This is not only because the way
SimEvents interacts with Simulink is hardcoded in the tool,
but also because SimEvents is executed on top of Simulink,
thus constraining their interactions. The abstract syntax and
semantics at the core of ModHel’X allow MoCs to be described
independently from each other, and interface blocks allow the
description of adaptation patterns for any pair of MoCs.

Tools which work with a fixed set of MoCs, like those by
The Mathworks, are of course more efficient and can rely
on predefined semantics to validate models or generate code.
However, when the predefined semantics does not match the
designer’s needs, this can lead to modeling errors or to the
introduction of modeling artifacts to work around the built-in
semantics of the tools. We do not present ModHel’X as the
ultimate modeling tool. On the contrary, we want to show that
it is possible to federate heterogeneous models by considering
them as black boxes and wrapping them in explicit semantic
adaptation boxes. This way, dedicated tools can still be used for
each subsystem, and the global behavior of the whole system
in response to a simulation scenario can be computed and
checked against the expected one.

VI. CONCLUSION

The example presented in this article illustrates that several
models of computation are necessary for describing real-world
systems, even of moderate complexity. The ModHel’X frame-
work has been designed specifically to address the composition
of models directed by different models of computation. To
achieve this goal, ModHel’X supports the precise description
of both the models of computation and the semantic adaptation
between them.

The adaptation between models of computation is taken into
account in an abstract and reusable way thanks to interface
blocks. A key point of our approach is the possibility to
explicitly model the three aspects of the semantic adaptation
between models of computation: adaptation of data, adaptation
of time and adaptation of control.

Once a heterogeneous model of a system has been built, it
can be executed and test scenarios may be run, allowing an
early validation of the design of the system. Beyond simulation,
well-defined interactions between models of computation
may be used for generating glue code for the semantic



adaptation between models of subsystems, and for the global
validation of heterogeneous models through testing and model-
checking [19]. In particular, we have developed a formal theory
of conformance testing for heterogeneous models in [20] and
an algorithm to generate interactive test cases that could be
run by ModHel’X.

In this paper, we have dealt only with heterogeneity between
the models of different parts of a system. However our
framework may be used to handle the heterogeneity of different
views of the same part of a system as well, as we have shown
in [21]. Such views are used for modeling non-functional
aspects of the system, and the approach presented here may
be extended for semantic adaptation between them.

REFERENCES

[1] T. A. Henzinger and J. Sifakis, “The embedded systems design challenge,”
in Proceedings of the 14th International Symposium on Formal Methods
(FM), Lecture Notes in Computer Science. Springer, August 2006, pp.
1–15.

[2] C. Hardebolle and F. Boulanger, “Exploring multi-paradigm modeling
techniques,” SIMULATION: Transactions of The Society for Modeling
and Simulation International, vol. 85, pp. 688–708, November 2009.

[3] F. Boulanger and C. Hardebolle, “Simulation of Multi-Formalism Models
with ModHel’X,” in Proceedings of ICST’08. IEEE Comp. Soc., 2008,
pp. 318–327.

[4] P. J. Mosterman and H. Vangheluwe, “Computer automated multi-
paradigm modeling: An introduction,” Simulation: Transactions of the
Society for Modeling and Simulation International, vol. 80, no. 9, pp.
433–450, 2004.

[5] C. Hardebolle, F. Boulanger, D. Marcadet, and G. Vidal-Naquet, “A
generic execution framework for models of computation,” in Proceedings
of the 4th International Workshop on Model-based Methodologies for
Pervasive and Embedded Software (MOMPES 2007), at the European
Joint Conferences on Theory and Practice of Software (ETAPS 2007).
IEEE Computer Society, march 2007, pp. 45–54.

[6] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity – the Ptolemy
approach,” Proceedings of the IEEE, Special Issue on Modeling and
Design of Embedded Software, vol. 91, no. 1, pp. 127–144, January
2003.

[7] C. André, F. Mallet, and R. De Simone, “Time Modeling in
MARTE,” in ECSI Forum on specification & Design Languages
(FDL). ECSI, 2007, pp. 268–273. [Online]. Available: http:
//hal.archives-ouvertes.fr/inria-00204481/en/

[8] OMG, “UML profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE) RFP,” february 2005. [Online]. Available:
http://www.omg.org/cgi-bin/doc?realtime/2005-2-6

[9] W. Chang, S. Ha, and E. Lee, “Heterogeneous simulation – Mixing
discrete-event models with dataflow,” The Journal of VLSI Signal
Processing, vol. 15, no. 1, pp. 127–144, 1997.

[10] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” in
Proceedings of the IEEE, vol. 75, no. 9, september 1987.

[11] F. Balarin, L. Lavagno, C. Passerone, A. L. S. Vincentelli, M. Sgroi,
and Y. Watanabe, “Modeling and designing heterogeneous systems,”
Advances in Concurrency and System Design, 2002.

[12] G. Berry and G. Gonthier, “The esterel synchronous programming
language: Design, semantics, implementation,” Science Of Computer
Programming, vol. 19, no. 2, pp. 87–152, 1992.

[13] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone, “The synchronous languages twelve years later,” Proc. of
the IEEE, vol. 91, no. 1, pp. 64–83, Jan. 2003, special issue on Embedded
Systems.

[14] D. Biernacki, J.-L. Colaco, G. Hamon, and M. Pouzet, “Clock-directed
Modular Code Generation of Synchronous Data-flow Languages,” in
ACM International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), Tucson, Arizona, June 2008.

[15] E. A. Lee and S. Tripakis, “Modal models in ptolemy,” in Proceedings
of 3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools (EOOLT 2010), October 2010, pp. 1–11.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/700.html

[16] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
systems in BIP,” in 4th IEEE International Conference on Software
Engineering and Formal Methods (SEFM06), september 2006, pp. 3–12.

[17] The MathWorks, “Automotive power window system,”
http://www.mathworks.com/products/simulink/demos.html?file=
/products/demos/simulink/PowerWindow/html/PowerWindow1.html.

[18] C. G. Cassandras, M. I. Clune, and P. J. Mosterman, “Hybrid system
simulation with SimEvents,” in Proceedings of the 2nd IFAC Conf. on
Analysis and Design of Hybrid Systems, 2006, pp. 267–269.

[19] C. Jacquet, F. Boulanger, and D. Marcadet, “From data to events:
Checking properties on the control of a system,” in Proceedings of
the Sixth ACM-IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE’2008), IEEE. Anaheim, California:
IEEE Computer Society, June 2008, pp. 17–26.

[20] B. Kanso, M. Aiguier, F. Boulanger, and A. Touil, “Testing of abstract
components,” in Proceedings of the 7th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2010), ser. Lecture Notes in
Computer Science 6255. Springer-Verlag, 2010, pp. 184–198.

[21] F. Boulanger, C. Jacquet, C. Hardebolle, and E. Rouis, “Modeling
heterogeneous points of view with modhel’x,” in MODELS 2009
Workshops, ser. Lecture Notes in Computer Science, S. Ghosh, Ed.,
vol. 6002. Berlin Heidelberg, Germany: Springer-Verlag, 2010, pp.
310–324.


