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Abstract. The Object Constraint Language (OCL) is widely used to
express precise and unambiguous constraints on models and object ori-
ented programs. However, the notion of temporal constraints, controlling
the system behavior over time, has not been natively supported. Such
temporal constraints are necessary to model reactive and real-time sys-
tems. Although there are works addressing temporal extensions of OCL,
they only bring syntactic extensions without any concrete implementa-
tion conforming to the OCL standard. On top of that, all of them are
based on temporal logics that require particular skills to be used in prac-
tice.

In this paper, we propose to fill in both gaps. We first enrich OCL by a
pattern-based temporal layer which is then integrated into the current
Eclipse’s OCL plug-in. Moreover, the temporal constraint support for
OCL presented here connects to automatic test generators, and forms
the first step towards creating a bridge linking model driven engineering
and usual formal methods.

Keywords: OCL, Object-oriented Programming, Temporal con-
straints, Eclipse/MDT, Model-Driven Engineering, Formal Methods

1 Introduction

The Object Constraint Language (OCL) is an expression-based language used to
specify constraints in the context of object-oriented models [2]. It is equivalent
to a first-order predicate logic over objects, but it offers a formal notation similar
to programming languages. OCL may complete the specification of all object-
oriented models, even if it is mostly used within UML diagrams.

The OCL constraints may be invariants that rule each single system state, or
preconditions and postconditions that control a one-step transition from a pre-
state to a post-state upon the call of some operation. Thus, it is not possible to
express constraints of dynamic behavior that involve different states of the model
at different points of time. This is essentially due to the absence of the notion
of time and events in OCL. This limitation seems to form the main obstacle
which the use of OCL faces today in the verification and validation areas. The

* This work was funded by the French ANR TASCCC project (ANR-09-SEGI-014) [1]
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standard OCL published in [2] does not provide any means of featuring temporal
quantification, nor of expressing temporal properties such as safety or liveness.
Adding a temporal layer to the OCL language forms a primordial step towards
supporting the automatic verification and validation of object-oriented systems.

In this paper, we propose a temporal extension of OCL that enables mod-
elers/developers to specify temporal constraints on object-oriented models. We
do so by relying on Dwyers’s patterns [3]. A temporal constraint consists in a
pattern combined with a scope. A pattern specifies the behavior that one wants
to exhibit/avoid, while a scope defines the piece of execution trace to which a
given pattern applies. This allows us to write temporal OCL constraints with-
out any technical knowledge of formalisms commonly used to describe temporal
properties such as LTL or CTL logics.

After its integration into the Eclipse/MDT current OCL plug-in, our lan-
guage provides a framework not only to constrain dynamic behavior of object-
oriented systems, but other to generate functional tests for objects and verify
their properties. The language is indeed used in the validation of smart card
product security [1]. It provides a means to express security properties (pro-
vided by Gemalto) on UML specification of the GlobalPlatform, the latest gen-
eration smart card operating system. In this work [4], the test requirements are
expressed as OCL temporal constraints described in our proposed language and
then transformed into test scenarios. These are then animated using the Certifylt
tool, provided by the Smartesting company to generate test cases.'

This paper is organized as follows. Section 2 presents the OCL language
while Section 3 discusses its limitations on the expression of temporal aspects
and the related works. Section 4 describes our proposal for extending OCL to
support time and events. Section 5 presents the implementation of the proposed
extension in the Eclipse’s OCL plug-in. Finally, Section 6 concludes and presents
the future work.

2 Object Constraint Language (OCL)

OCL is a formal assertion language, easy to use, with precise and unambiguous
semantics [2]. It allows the annotation of any object-oriented model, even if it is
most used within UML diagrams. OCL is very rich, it includes fairly complete
support for:

— Nawvigation operators to navigate within the object-oriented model,
— Set/Sequence operations to manipulate sets and sequences of objects,
— undversal/existential Quantifiers to build first order (logic) statements.

We briefly recall these OCL capabilities by means of an example. The UML
class diagram in Fig 1 represents the structure of a simple software system. This
system has a free_memory attribute corresponding to the amount of free memory
that is still available, and the following three operations:

! www.globalplatform.org, www.gemalto.com, www.smartesting.com
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— load(app: Application): downloads the application app given as a parameter.

— i4nstall(): installs interdependent applications already loaded. Different ap-
plications can be loaded before a single call of install(), but only applications
having all their dependencies already loaded are installed.

— run(app: Application): runs the application app given as a parameter that
should be both already loaded and installed.

A system keeps references to the previously installed applications using the as-
sociation end-point installed_apps. An Application has a size attribute and keeps
references to the set of applications it depends on using the association end-point
dependencies. We will use this illustrative example along this work.

H System .
T free_memory : EInt ) H Application dependencies
@& load(Application) installed_apps size : EInt 0.
@ install() 0.% [ :
@& run(Application) [

Fig. 1. A model example

Exp 1 describes three typical OCL expressions. The first expression
all_apps_dependencies_installed verifies that every installed application has its
dependencies installed as well. The all_dependencies expression is a recursive
function that builds the transitive closure of the (noncyclic) dependencies asso-
ciation. The may_install_on expression is a boolean function which has a system
as parameter and verifies that installing the application with its dependencies
fits into the system’s free memory.

context System

def: all_apps-dependencies_installed: Boolean =
self.installed_apps—>forAll(app: Application | self.installed_apps—>
includesAll (app.dependencies))

context Application

5| def: all_dependencies: Set(Application) =

self.dependencies.all_dependencies —>asSet()—>including(self)

def: may_install_on(sys: System): Boolean =
(self.all_dependencies — sys.installed_apps).size—>sum() < sys.free_memory

Exp. 1. OCL Expressions

Exp 1 then illustrates the OCL ability to navigate the model
(self.installed_apps, app.dependencies), select collections of objects and manip-
ulate them with functions (including(), sum()), predicates (includesAll()) and
universal/existential quantifiers (forAll()) to build boolean expressions.
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3 OCL Limitations

3.1 OCIL is a First-Order Predicate Logic

OCL boolean expressions are first order predicate logic statements over a model
state. They are written with a syntax which is similar to programming languages.
Such OCL expressions are evaluated over a single system state, which is a kind of
a snapshot given as an object diagram at some point in time. An object diagram
is a particular set of objects (class instances), slots (attribute values), and links
(association instances) between objects. For example, an equivalent first order
statement of all_apps_dependencies_installed expression is:

Vs € Sys,Va,b € App, (s,a) € Ins A (a,b) € Dep = (s,b) € Ins
where a state (object diagram) is a tuple (Sys, App, Ins, Dep, free, size)

— Sys is the set of System objects

— App is the set of Application objects

— Ins C Sysx App is the set installed_apps links, (s, a) € Ins iff the Application
instance a is installed on the System instance s

— Dep C App x App is the set dependencies links, (a,b) € Dep iff the Applica-
tion instance a depends on the Application instance b

— free : Sys — N is the function that associates each System instance s to
the amount of free memory available

— size : App — N is the function that associates each Application instance a
to its memory size.

The first order logic allows quantification over finite and infinite domains?

contrary to the OCL language which has no free quantification over infinite do-
mains such as Z or N. Indeed, in OCL, one distinguishes three kinds of domains:

— Set of objects.

— Set of some Primitive Type values.

— Time that is the set of all instants of the model’s life. It corresponds to N if
time is discrete, Q if time is dense or R if time is continuous.

The OCL expressions presented in Exp 1 are typical examples of OCL quantifi-
cation (forAll(), exists()) over sets of objects (e.g. self.dependencies) and sets of
primitive type values (e.g. self.all_dependencies.size of PrimitiveType::Integer).
Since these sets are selections/subsets of an object diagram, they are finite by
construction. Hence, there is no limitation to use OCL quantifiers over them.
However, since Time is intrinsically infinite, quantification over it is restricted
within OCL. This last point will be detailed in the next subsections.

2 Note that the first order logic over the set theory (with possibly many infinite sets)
is undecidable.
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3.2 Temporal dimension

As previously mentioned, the OCL expressions are evaluated over a single system
state at some point in time. But, the OCL language also provides some implicit
quantification over time by means of OCL rules. An OCL rule is a temporal
quantification applied to an OCL boolean expression, and may be an invariant
of a class, a pre- or a post-condition of an operation.

The expression within an invariant rule has be to be satisfied throughout
the whole life-time of all instances of the context class. The first expression in
Exp 2 specifies the invariant which requires, in all system states, a nonempty
free memory and the installation of dependencies of all installed applications.
The precondition and postcondition are used to specify operation contracts. A
precondition has to be true each time the corresponding operation is called, and
a postcondition has to be true each time right after the corresponding operation
execution has terminated. The second expression in Exp 2 describes the rule
that provides the load(app: Application) contract. It requires that the applica-
tion given as a parameter is not already installed and there is enough memory
available to load it. Then, it ensures that the free_memory attribute is updated
using the @pre OCL feature.

context System
inv : self.free_memory > 0 and all_apps-dependencies_installed = true

context System::load(app: Application):
pre : self.installed_apps—>excludes(app) and self.free_memory > app.size
post: self.free_memory = self.free_memory@pre — app.size

Exp. 2. OCL rules

The operation parameters can be used within a pre or a post-condition rule,
but the @pre OCL feature is only used within a post-condition rule. When @pre
is used within the boolean expression of a post-condition rule, it is evaluated
over two system states, one right before the operation call and one right after
its execution. In other words, OCL expressions describe a single system state
or a one-step transition from a previous state to a new state upon the call of
some operation. Therefore, there is no way to make OCL expressions involving
different states of the model at different points in time. OCL has a very limited
temporal dimension.

To illustrate the temporal limits of OCL, let us consider the following tem-
poral properties for the example presented in Fig 1:

safety_1: each application can be loaded at most one time

safety_2: an application load must precede its run

safety_3: there is an install between an application loading and its run
liveness: each loaded application is installed afterwards

Such temporal properties are impossible to specify in OCL without at least
enriching the model structure with state variables. In temporal logics [5], we for-
mally distinguish the safety properties from the liveness ones. Safety properties
for bad events/states that must not happen and liveness properties for good
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events/states that should happen. As safety properties consider finite behaviors,
they can be handled by modifying the model and adding variables which save
the system history. If we consider the first safety property, one solution is to save
within a new attribute loaded_apps the set of applications already loaded, but
not yet installed and then check in the load(app: Application) precondition that
the loaded application is neither installed, nor loaded:

context System::load(app: Application):
pre : self.installed_apps—>excludes(app) and self.loaded_apps—>excludes(app)
and self.free_memory > app.size

Even if specifying complementary temporal OCL constraints must not alter
the model, such case-by-case techniques are of no use when specifying liveness
properties that handle infinite behaviors.

In this work, we are mainly interested in temporal constraints from the tem-
poral logics point of view, when they are ruling the dynamic behavior of systems.
They specify absence, presence and ordering of the system life-time steps. A step
may be a state that holds for a while or an event occuring at some point of time.

3.3 Events

An event is a predicate that holds at different instants of time. It can be seen
as a function P : Time — {true, false} which indicates at each instant, if the
event is triggered. The subset {t € Time | P(t)} C Time stands then for all time
instants at which the event P occurs. When quantifying time, we need to select
such subsets of Time that correspond to events. We commonly distinguish five
kinds of events in the object-oriented paradigm:

Operation call instants when a sender calls an operation of a receiver object

Operation start instants when a receiver object starts executing an operation

Operation end instants when the execution of an operation is finished

Time-triggered event that occurs when a specified instant is reached

State change that occurs each time the system state changes (e.g when the
value of an attribute changes). Such an event may have an OCL expression
as a parameter and occurs each time the OCL expression value changes.

OCL only provides an implicit universal quantification over operation call events
within pre-conditions and a universal quantification over operation end events
within post-conditions. However, it lacks the finest type of events which is state
change. State change events are very simple, but powerful construct. It can
replace other types of events. Suppose we add a chronometric clock that is now
a part of our system. This common practice will create a new object clock within
our system that has a time attribute. Each change of that attribute will generate
a state-change event. A time-triggered event of some specified instant will be
then one particular state-change in which the OCL boolean expression clock.time
= instant becomes true.

To replace operation call, start and end events using the state-change event,
we need to integrate the heap structure within the system model. We do not
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recommend this technique that is in contradiction to the model-driven engi-
neering approach because it pollutes the system model with platform specific
information and ruins all the abstraction effort.

3.4 Quantification

OCL has no existential quantification over time or events. For example, the
second safety property we previously proposed needs existential quantification:
it exists a load() operation call that precedes a run() operation call.

The other quantification limitation we identified is that OCL sets its few
temporal quantification constructs within OCL rules, prior to the quantifica-
tion over objects within the OCL expressions. Again, the second safety property
needs quantifying over objects prior to quantifying over time: for all applica-
tion instance app, it exists a load(app) operation call that precedes a run(app)
operation call. We intend to relate the load event of the particular application
with its run. This quantification order is the way to define the relations we may
need between events.

3.5 Related work

Several extensions have been proposed to add temporal constraints to the OCL
language. [6] presents an extension of OCL, called TOCL, with the basic oper-
ators of LTL. Both past and future operators are considered. This paper only
provides a formal description of the extension based on Richters’s OCL seman-
tics [7]. It gives no explanation of how all presented formal notions could be
implemented. [8] proposes a version of CTL logic, called BOTL, and shows of
how to map a part of OCL expressions into this logic. There is no extension of
OCL by temporal operators, but a theoretical precise mapping of a part of OCL
into BOTL. [9] provides an OCL extension, called EOCL, with CTL temporal
operators. This extension is strongly inspired by BOTL [8], and allows model
checking EOCL properties on abstract state machines. A tool (SOCLE), im-
plementing this extension, is briefly presented with verification issues in mind;
however, there is no tool available at the project site [10]. [11] proposes templates
(e.g. after/eventually template) to specify liveness properties. A template is de-
fined by two clauses: a cause and a consequence. A cause is the keyword after
followed by a boolean expression, while a consequence is an OCL expression pre-
fixed by keywords like eventually, immediately, infinitely, etc. These templates are
formally translated into observational p-calculus logic. This paper gave no means
to OCL developers to implement such templates. It only formally addresses some
liveness templates; other liveness and safety properties are not considered. [12]
proposes past/future temporal operators to specify business components. This
proposal is far from been used in the context of concrete implementation con-
forming to the standard OCL [2]. For instance, an operator may be followed
by user-defined operations (with possible side effects) that are not concretely in
conformance with the standard OCL.
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4 OCL Temporal Extension

After identifying the OCL limitations that are absences of temporal operators,
event constructs and free quantification, and after reviewing most existing OCL
temporal extensions, we give in the following our contribution :

— A pattern-based language contrary to most of OCL temporal extensions that
are based on temporal logic formalisms such as LTL or CTL (see Subsec-
tion 3.5). The technicality and the complexity of these formalisms give rise
naturally to difficulties even to the impossibility, in some cases, of using them
in practice [3];

— Enrichment of OCL by the notion of events that is completely missing in
the existing temporal extensions of OCL;

— A user-friendly syntax and formal scenario-based semantics of our OCL tem-
poral extension;

— A concrete implementation conforming to the standard OCL [2]. In fact, all
the works mentioned in Subsection 3.5 only address the way OCL has to
be extended to deal with temporal constraints. The main purpose behind
them was to use OCL in verification areas such as model checking. How-
ever, they did not reach this last step, at least not in practice, due to the
absence of concrete implementations conforming to the standard OCL [2] of
the proposed extensions.

4.1 Temporal patterns

Formalisms such as linear temporal logic (LTL) and tree logic (CTL) have re-
ceived a lot of attention in the formal methods community in order to describe
temporal properties of systems. However, most engineers are unfamiliar with
such formal languages. It requires a lot of effort to bridge the semantic gap be-
tween the formal definitions of temporal operators and practice. To shed light on
this obstacle, let us consider the safety_3 property, its equivalent LTL formula
looks like:

O(load A —run = ((—run U (install A ~run)) V - o run))

To cope with this, Dwyer et al. have proposed a pattern-based approach [3]. This
approach uses specification patterns that, at a higher abstraction level, capture
recurring temporal properties. The main idea is that a temporal property is a
combination of one pattern and one scope. A scope is the part of the system
execution path over which a pattern holds.

Patterns [3] proposes 8 patterns that are organized under a semantics classi-
fication (left side of Fig 2). One distinguishes occurrence (or non-occurrence)
patterns from order patterns.

Occurrence patterns are: (i) Absence: an event never occurs, (i7) Existence: an
event occurs at least once, (7i¢) BoundedExistence has 3 variants: an event occurs
k times, at least k times or at most k times, and (iv) Universality: a state is
permanent.
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Order patterns are: (i) Precedence: an event P is always preceded by an event @,
(#7) Response: an event P is always followed by an event @, (#i¢) ChainPrecedence:

a sequence of events Pi,..., P, is always preceded by a sequence Q1,...,Qn
(it is a generalization of the Precedence pattern), and (iv) ChainResponse: a
sequence of events Py, ..., P, is always followed by a sequence Q1,...,Q, (it is

a generalization of the Response pattern as well).

Scopes [3] proposes 5 kinds of scopes (right side of Fig 2): (i) Globally covers
the entire execution, (i7) Before Q covers the system execution up to the first
occurrence of @, (iii) After Q covers the system execution after the first occur-
rence of @, (iv) Between Q and R covers time intervals of the system execution
from an occurrence of @) to the next occurrence of R, and (v) After Q until R is
same as the Between scope in which R may not occur.

Property Patterns Q R Q Q@ R Q
/ \ globally I
Occurrence Order before Q NS
/ \ / \ after Q =N
Absence pounded Precedence RESPONSE | ctween Q and R~ —— ——
Universality Existence Pre(f:zziennce Recs}:)il:se after Q until R s I ———

Fig. 2. Dwyer’s patterns and scopes

Back to our temporal property safety_3 : there is an install between an appli-
cation loading and its run. It simply corresponds to the Existence pattern (exists
install) combined with the Between scope (between load and run). It is clear that
the patterns of Dwyer et al. dramatically simplify the specification of temporal
properties, with a fairly complete coverage. Indeed, they collected hundreds of
specifications and they observed that 92% of them fall into this small set of pat-
terns/scopes [3]. Furthermore, a complete library is provided [13], mapping each
pattern/scope combination to the corresponding formula in many formalisms
(e.g. LTL, CTL, QREs, u-calculus).

For these reasons, we adopt this pattern-based approach for the temporal part
of our OCL extension and we bring enhancements to improve the expressiveness:

— Duwyer et al. have chosen to define scopes as right-open intervals that include
the event marking the beginning of the scope, but do not include the event
marking the end of the scope. We extend scopes with support to open the
scope on the left or close it on the right. This adds one variant for both the
Before and After scopes and three supplementary variants for the Between
and After. .. until scopes. We have chosen open intervals as default semantics.

— In Dwyer et al. work, Between and After...until scopes are interpreted rel-
ative to the first occurrence of the designated event marking the beginning
of the scope (Fig 2). We kept this as default semantics and we provide an
option to select the last occurrence semantics.

— To improve the usability, we add the scope When that has an OCL boolean
expression as a parameter. It covers the execution intervals in which this
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OCL expression is evaluated to true. The When scope is derived from the
After ... until scope:

When P = After becomesTrue(P) until becomesTrue(not P)

The becomesTrue event is introduced below.

— Order patterns describe sequencing relationships between events and/or
chains of events. The Dwyer et al. semantics adopt non strict sequencing.
For example, A, B (is) preceding B, C in both A, B,C and A, B, B, C execu-
tions. We add features to specify strict sequencing for an order pattern. For
example, A, B (is) preceding strictly B, C only in the A, B, B, C execution.
We provide same constructs to have strict sequencing within one chain of
events, A, B to denote a non strict sequencing and A; B for a strict one.

— In Dwyer et al. work, there is no construct equivalent to the temporal op-
erator Next. For example, A (is) preceding C in both A;C and A; B; C exe-
cutions. We add features to specify the Next temporal operator for an order
pattern. For example, A (is) preceding directly C only in the A; C execution.
The directly feature is a particular case of strict sequencing.

These enhancements are inspired by our needs within the TASCCC project
[1] and the Dwyer’s notes about the temporal properties that were not sup-
ported [13]. It is obvious that these enhancements improve the requirement cov-
erage (i.e. 92%) shown by Dwyer, but we did not measure it precisely.

4.2 Events

Events are predicates to specify sets of instants within the time line. We discussed
in Section 3 the different types of events in the object-oriented approach. There
are operation (call/start/end) events, time-triggered events and state change
events. We have seen that when integrating the clock into the system, time-
triggered events are particular state change events. Hence, we only need to extend
OCL with the necessary construct for both operation and state change events.

We aim to connect our OCL temporal extension to formal methods such as
model-checking and test scenarios generation. Formal methods are mainly based
on the synchronous paradigm that has well-founded mathematical semantics and
that allows formal verification of the programs and automatic code generation.
The essence of the synchronous paradigm is the atomicity of reactions (operation
calls) where all the occurring events during such a reaction are considered si-
multaneous. In our work, we will adopt the synchronous paradigm, and we then
merge the operation (call/start/end) events into one call event, named isCalled,
that leads the system from a pre-state to a post-state without considering inter-
mediate states.

isCalled: is a generic event construct that unifies both operation events and
state change events. It has three optional parameters:

— op: is the called operation. The keyword anyOp is used if no operation is
specified
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— pre: is an OCL expression that is a guard over the system pre-state and/or
the operation parameters. The operation invocation will lead to a call event
only if this guard is satisfied by the pre-state of the call. If it is not satisfied,
the event will not occur even if the operation is invoked.

— post: is an OCL expression that is a guard over the system post-state and/or
the return value. The operation invocation will lead to a call event only if
this guard is satisfied by the post-state of the call.

becomesTrue: is a state change event that is parameterized by an OCL boolean
expression P, and designates a step in which P becomes true, i.e. P was evaluated
to false in the previous state. This construct is a syntactic sugar, it stands for
any operation call switching P to true:

becomesTrue(P) = isCalled(op : anyOp, pre: not P, post: P)

4.3 Quantification

Our OCL extension supports universal quantification over objects prior to quan-
tification over time. The OCL feature let Variables in can be used within our
OCL extension on the top of temporal expressions.

5 Integration within the Eclipse/MDT tool-chain

5.1 Structure of Eclipse’s OCL Plug-in

The Eclipse/MDT OCL Plug-in [14] provides an implementation of the OCL
OMG standard for EMF-based models. It provides a complete support for OCL,
but we will only focus on some capabilities that are represented and highlighted
in red within Fig 3.

! |
‘ ‘
| |
! I
|
! I
‘ |
| |
|
|
I ! I
| |
| |
| |
|
! I
| |
! I
| |

completeOCL
CST
T I
' |
I
temporal OCL |/
CST i

()

inputs concrete tree abstract tree tools

Fig. 3. Eclipse MDT/OCL 4.x with Temporal extension

On the left of Fig 3, there are two Xtext editors that support different aspects
of OCL usage. The completeOCL editor for *.ocl documents that contain OCL
constraints, and the OCLstdlib editor for *.oclstdlib documents that facilitates
development of the OCL standard library. This latter is primarily intended for
specifying new functions and predicates to use within OCL expressions.



12 S. Taha et al.

In the middle of Fig 3, the architecture of the OCL plug-in is based around
a pivot model. The pivot model isolates OCL from the details of any particular
UML or Ecore (or EMOF or CMOF or etc.) meta-model representation. OCL
expressions can therefore be defined, analyzed and evaluated for any EMF-based
meta-model. Notice that most object-oriented meta-models (e.g. UML) are al-
ready specified within EMF.

From left to right, the Xtext framework [15] is used to transform the OCL
constraints document to a corresponding Concrete Syntax Tree (CST). Then,
using a Model to Model transformation (M2M), it generates the pivot model
which corresponds to the Abstract Syntax Tree (AST). Notice that the CST
and the AST are both defined within the OMG standard [2]. Finally on the
right of Fig 3, the OCL plug-in provides interactive support to validate OCL
expressions through their pivot model and evaluate them on model instances.

As highlighted in blue in Fig 3, we integrated our temporal extension within
the Eclipse/MDT OCL tool-chain with respect to its architecture. We first ex-
tended the OCL concrete grammar to parse *.tocl documents that contain tem-
poral OCL properties. After that, we extended in Ecore both completeOCLCST
and pivot meta-models with all the temporal constructs we defined. We kept
both Xtext and M2M frameworks. Finally, in a join work with our partner LIFC
within the TASCCC project, we developed a tool to transform temporal prop-
erties to test scenarios [1,4].

Due to the lack of space in this paper, we do not give the implementation
details on the temporalOCLCST structure and the pivot extension, but the
temporal OCL plug-in is published with documentation under a free/open-source
license [16]. For the same reason, we prefer to give the semantics of our temporal
extension as a technical report that is also available at [16].

5.2 Concrete Syntax

We extended the OCL concrete grammar defined within the OMG standard [2]
and implemented it within the Eclipse/MDT plug-in. The syntax of our language
for *.tocl documents is summarized in Fig 4.

TempOCL ::= temp (name)? ‘2’ TempSpec Scope ::= globally

TempSpec ::= Quantif ? Pattern Scope | before Event (‘' | )7

. . . . | after (‘" | ")? Event
- ) *
Quantif ::= let Variable (‘,” Variable)* in | between (‘[ | )7 last? Event and Event (‘[ | |')?
| after (‘" | ]")? last? Event unless Event (‘[ | ]")?
|

Pattern ::= always OclExpression when OclExpression
| never Event -
| eventually Event ((at least | at most)? integer times)?

| EventChain preceding(directly | strictly)? EventChain
\

EventChain following (directly | strictly)? EventChain

Event ::= CallEvent (‘| Event)? CallEvent ::= isCalled ‘(’ (anyOp | op : Operation)

| ChangeBuvent (‘| Event)? (¢, pre : OclExpression)?
EventChain ::= Event (‘,) Event)* (“, post : OclExpression)? ‘)’
| Event (‘; Event)* ChangeEvent ::= becomesTrue ‘(” OclExpression ‘)’

Fig. 4. Grammar of the OCL temporal extension
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In this figure, non-terminals are designated in italics and terminals in bold.
(...)? designates an optional part and (...)* a repetitive part. Finally, the non-
terminals imported from the standard OCL grammar (e.g. OclExpression) are
underlined. This grammar represents the temporal layer we added to OCL ex-
pressions (temporal patterns, events constructs and support of quantification).
Taking advantage of the integration within the Eclipse/MDT OCL, we devel-
oped, with the help of the Xtext framework, a temporal OCL editor which pro-
vides syntax coloring, code formatting, code completion, static validation (well
formedness, type conformance...) and custom quick fixes, etc. Furthermore,
there is an outline view that shows the concrete syntax tree of the temporal
OCL property on-the-fly (while typing). Fig 5 illustrates a snapshot of the out-
line view.

¢ | 2 example.tocl &3 > (=] 5= outline 82

i = context System ¥  system
=temp liveness: let apptoInstall : Application in » :
= becomesTrue(self.installed apps->includes(apptoInstall)) {} <temp> liveness
following strictly isCalled(load(app:Application), pre: app = appteInstall) ¥ {} <temp>safety_1
globally » {} <temp>safety 2
= temp safety 1: ¥ {; <temp>safety_3_v2
= eventually isCalled(load(app:Application)) at most 1 times » = apptolnstall
globally ¥ = "existence”

- temp safety 2: let apptoInstall : Application in ¥ = "disjunction of events

isCalled(leoad(app:Application), pre: app = apptoInstall) ¥ [ ) change event
preceding isCalled(run(app:Application), pre: app = appteInstall) » i@ self.installed_apps->
glebally ¥ i= "between"”
= temp safety 3 v2: let apptoInstall : Application in ¥ = "disjunction of events”
eventually becomesTrue(self.installed apps->includes(apptoInstall)) » ] load call

= between isCalled(load(app:Application), pre: app = apptoInstall)

and isCalled(run(app:Application), pre: app = apptoInstall) ¥ &z "disjunction of events”

» [ jruncall

Fig.5. The Temporal OCL editor

5.3 Examples of temporal properties

In Exp 3, the temporal properties we identified in Section 3 are written us-
ing our OCL temporal extension. Due to our grammar, the temporal proper-
ties seem to be written in natural language. They are ruling call event occur-
rences with different patterns: following (strict), preceding (non-strict), existence
and boundedexistence that are combined with globally and between scopes. Both
safety_2 and safety_3 properties require quantification over objects prior to tem-
poral operators to specify relations between events. For instance, in safety_2 we
need to specify that the load of an application app must precede the run of the
same application app, and not any other. To do so, we introduced the variable
apptolnstall which allows us to set the same parameter apptolnstall for both
load and run operations.

context System

temp safety_1:
eventually isCalled(load(app:Application)) at most 1 times
globally

temp safety_2: let apptolnstall : Application in

isCalled (load (app: Application), pre: app = apptolnstall)
preceding isCalled (run(app:Application), pre: app = apptolnstall)
globally
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temp safety_3: let apptolnstall : Application in
eventually isCalled(install())
between isCalled (load (app: Application), pre: app = apptolnstall)
and isCalled (run(app: Application), pre: app = apptolnstall)
temp liveness: isCalled (install())
following strictly isCalled(load(app:Application))
globally

Exp. 3. Temporal OCL constraints

The safety_3 property is not relevant because having an install call between the
load and the run does not ensure that the application will be really installed.
This will not happen if some dependencies are not loaded. To overcome this,
we propose in Exp 4 two variants of the safety_3 property. The safety_3_vi
property ensures that there is a particular install call, leading to a post-state
where the application is installed. The safety_3_v2 property only specifies that
the application becomes installed independently of any operation call (see the
becomesTrue semantics in Subsection 4.2). It requires any operation call from
a pre-state where the application was not installed to a post-state where it is
installed.

temp safety_3_vl: let apptolnstall : Application in
eventually isCalled(install(),
post: self.installed_apps—>includes(apptolnstall))

between

temp safety_3_v2: let apptolnstall : Application in
eventually becomesTrue(self.installed_apps—>includes(apptolnstall))
between

Exp. 4. Variants of Safety_3 property

6 Conclusion

Although many temporal extensions of OCL exist, they have not yet been used
convincingly in practice. To cope with this, we have presented, based on Dwyer’s
specification patterns, an extension of the OCL language to express temporal
constraints on the object-oriented systems. We have developed this extension
and we have integrated it into the Eclipse’s OCL plug-in version 4.x.

The ability of our language to easily describe temporal properties without us-
ing complex formal notations, is a first step toward the testing and verification
of object-oriented models. As regards practical applications, our language is
currently used in the context of a cooperation with Gemalto and smartesting
companies, which aim to develop strategies to support the automatic testing of
security properties on smart card operating system GlobalPlatform.

Future work. As previously stated, adding temporal aspects to OCL language
could be a promising direction to explore testing and model checking techniques.
On the first hand, we are currently investigating the method of building a frame-
work which automatically generates test purposes for the object testing tech-
niques such as [17-19]. Indeed, test purposes are commonly used to guide the
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test generation techniques; this allows the significant decrease of the exponen-
tial combinatorial state explosion. On the second hand, we intend to connect
our language to usual model checking tools inspired by the work proposed by
Distefano et al. in [8].
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