
MODELING AND TESTING OF

COMPONENT-BASED SYSTEMS

PH.D. IN COMPUTER SCIENCE

by

Bilal KANSO

Defended on November 21st, 2011

M. Marc AIGUIER Ecole Centrale Paris (ECP) Thesis director
M. Frédéric BOULANGER Supelec E3S Co-advisor
M. Farhad ARBAB Centre for Mathematics and Reporter

Computer Science (CWI) Amsterdam
Mme. Virginie WIELS Onera Toulouse Reporter
M. Roland GROZ Université de Grenoble et Ensimag Examiner
M. Daniel KROB Ecole polytechnique Examiner

Ecole Centrale Paris (ECP)

Abstract

In spite of several decades of research, assuring the quality of software systems still represents
a major and serious problem nowadays for the industry with respect to both results and costs.
This thesis comes within the scope of a proposal centered on a generic unified framework for
both complex software systems modeling and testing.

The contribution of this paper is then twofold: first, it defines a unified framework for mod-
eling generic components, as well as a formalization of integration rules to combine their be-
haviour. This is based on a coalgebraic definition of components, which is a categorical rep-
resentation allowing the unification of a large family of formalisms for specifying state-based
systems. Second, it studies compositional conformance testing i.e. checking whether an im-
plementation made from correct interacting components combined with integration operators
conforms to its specification.

keywords: Component-based system, Integration operators, Trace semantics, Transfer function,
Compositional testing, Conformance testing, Coalgebra, Monad, Testing in context.

La thèse s’inscrit dans le domaine de la modélisation et de la validation des systèmes mo-
dernes complexes. Les systèmes actuels sont en fait d’une complexité sans cesse croissante
et formés de plus en plus de composants de natures différentes. Ceci rend leur processus de
conception et de validation coûteux et difficile. Il semble être la simple façon permettant de faire
face à cette hétérogénéité et à cette complexité est l’approche orientée composant. Suivant cette
approche, le système est une entité formée par un ensemble des composants interconnectés. Les
composants définissent une interface qui permet d’abstraire leur modèle interne (boîte noire),
ce qui favorise la modularité et la réutilisation des composants. L’interaction entre ces compo-
sants se fait conformément à un ensemble des règles pré-établies, permettant ainsi d’avoir une
vision globale de comportement du système.

La conception ainsi que la validation des systèmes modernes reste alors problématique à
cause de la nécessité de prendre en compte l’hétérogénéité des différents composants. Dans ce
cadre, dans un premier temps, nous définirons un cadre formel générique dans lequel une large
famille de formalismes de description de systèmes à base d’états peut être naturellement cap-
turée. Ainsi, nous allons définir un ensemble de règles de composition permettant de mettre en
correspondance les différents composants et ainsi de constituer un modèle global du système
à concevoir. Dans un second temps, nous proposerons une approche de test d’intégration qui
permet de valider le comportement d’un système complexe sous l’hypothèse que chaque com-
posant est testé et validé. Cette approche vise à générer automatiquement des cas de test en
s’appuyant sur un modèle global décrit dans notre framework du système sous test.

Mots-clés : Systèmes à base de composants, Opérateurs d’intégration, Modèle de traces, Fonc-
tions de transfert, Test de conformité, Test compositionnel, Coalgèbres, Monades.

iv

Contents

I Introduction 1
1 Context . 1

1.1 System modeling . 1
1.2 Validation and verification . 4

2 Thesis overview . 8
2.1 Thesis contributions . 8
2.2 Plan of the thesis . 10

I Theoretical preliminaries 13

II Category theory 17
1 Category . 18

1.1 Category definition . 18
1.2 Constructions of categories . 19
1.3 Properties of arrows . 20

2 Universal properties . 21
2.1 Commutative diagrams . 21
2.2 Initial and terminal objects . 22
2.3 Product . 22
2.4 Coproduct . 23
2.5 Exponents . 24

3 Functors and natural Transformations . 26
3.1 Functors . 26

3.1.1 Powersets . 27
3.1.2 Free monoid . 27
3.1.3 Polynomial functors and Kripke polynomial functors 28
3.1.4 The category of category . 28

3.2 Natural transformations . 29
3.3 Heterogeneous Compositions . 30

3.3.1 Functor categories . 30
3.3.2 Heterogeneous compositions . 30

4 Monads in category theory . 32
4.1 Definition . 32
4.2 A working example . 32
4.3 More examples . 34

4.3.1 Partial . 35
4.3.2 Ordered nondeterminism . 35
4.3.3 Exception . 36

vi CONTENTS

4.4 Category of Kleisli . 36

III Coalgebras 39
1 Coalgebra definition . 40

1.1 Streams . 40
1.2 Mealy Machines . 41
1.3 Labeled Transition Systems (LTS) . 41
1.4 Input-Output Labeled Transition Systems (IOLTS) 42

2 Morphisms . 42
3 Bisimulation . 44

3.1 Stream . 45
3.2 Mealy machines . 45
3.3 Labeled transition systems . 45

4 Final coalgebras . 47
4.1 Streams . 48
4.2 Mealy machines . 50
4.3 Labeled transition systems . 51
4.4 More examples . 53

5 Co-induction . 54
5.1 Proof by bisimulation . 56

II Systems modeling framework 59

IV Generic components 63
1 Components as coalgebras . 64

1.1 Motivation . 64
1.2 Components . 64
1.3 Genericity of component definition . 67

2 Component traces . 69
2.1 Transfer function . 70
2.2 Component Traces . 71

3 Results . 73
3.1 Final model . 73
3.2 Minimal component . 75

4 Conclusion . 78

V Integration of components 79
1 Basic integration . 80

1.1 Cartesian product . 80
1.2 Feedback . 80

2 Complex operators . 89
2.1 Sequential composition . 91
2.2 Double sequential composition . 92
2.3 Synchronous product . 94
2.4 Concurrent composition . 95
2.5 Synchronous parallel composition . 96

3 Systems and compositionality . 98
3.1 Systems . 98
3.2 Examples . 100

CONTENTS vii

3.3 Compositionality . 109
4 Related works . 114
5 Conclusion . 116

III Validation of component-based systems by testing 117

VI Conformance testing theory: a general overview 121
1 Formal Method in Conformance Testing . 122

1.1 General principle . 122
1.2 The meaning of conformance . 123

1.2.1 Specification model . 123
1.2.2 Implementation model . 123
1.2.3 Conformance relation . 123

1.3 Formal framework for conformance testing 124
1.3.1 Test execution . 124
1.3.2 Test case properties . 125

VII Testing of components 129
1 Conformance relation . 130

1.1 Specification model . 130
1.2 Implementation model . 130
1.3 Conformance . 131

1.3.1 An overview . 131
1.3.2 Definition . 133

2 Finite computation tree . 136
2.1 Formal definition . 136
2.2 Unfolding algorithm . 137

3 Test Purpose . 140
4 Test generation guided by test purposes . 142

4.1 Preliminaries . 144
4.2 Inferences rules . 146
4.3 Example . 148
4.4 Properties . 150

5 Instantiating of the approach . 153

VIII Integration Testing 155
1 Compositional testing . 156

1.1 Compositional testing with cioco . 156
1.2 Compositionality for cartesian product . 160
1.3 Compositionality for feedback operators 160
1.4 Compositionality for complex operator . 164

2 Test purposes for sub-systems . 166
2.1 Sub-systems and projection . 167
2.2 System-based test purposes . 168

3 Related works . 171

IX Conclusion 173
1 Summary . 173
2 Future research . 173

viii CONTENTS

Bibliography 179

Chapter I

Introduction

This chapter provides the context of the thesis and gives the motivation of the research pre-
sented in it: what are complex software systems and how can they be modeled and tested?
It briefly introduces the "roadmap" for the chapters to follow by giving concepts and notions
needed to answer this question and then outlines the contributions and the structure of the
thesis.

1 Context

In spite of several decades of research, assuring the quality of software systems still represents a
major and serious problem nowadays for the industry with respect to both results and costs [1].
This thesis comes within the scope of a proposal centered on a generic unified framework for
both complex software systems modeling and testing.

In the following, we outline concepts and notions needed to achieve our goal.

1.1 System modeling

The work of this thesis proposes first to define a generic abstract complex formalism that mod-
els software components as concrete coalgebras for some Set endofunctors. Before concretely
addressing the definition of this formalism, we will first succinctly explain:

1. What do we mean by components and complex systems?

2. The need of a generic formal description of component

3. Why use Barbosa’s component definition based on coalgebras and monads?

Components Components are receiving increasing attention as a level of design thanks to
the great advantages they offer: modularity, re-usability, cost-effective solution for increasing
heterogeneity and complexity, etc. Components are then designed, developed and validated
separately in order to be widely used.

Several definitions of a component have been proposed in literature. Szyperski defines com-
ponents as "binary units of independent production, acquisition, and deployment that interact
to form a functioning system" [2]. D’Souza and Wills define a component as "a reusable part of
software, which is independently developed, and can be brought together with other compo-
nents to build larger units. It may be adapted but may not be modified" [3]. Despite the lack of

2 Chapter I Introduction

a unifying definition of what a component is, the design community agrees that any component
definition should have the following characteristic properties [4]:

• It is a unit of encapsulation. It has internal state space, acting as the memory of the com-
ponent;

• It is abstract enough to encapsulate a number of services through a public interface. There
is no internal observable state, the only way to access its content is via its public interface;

• It persists and evolves in time, according to some given semantics;

• It can be deployed easily and independently;

• It is a unit of third-party composition, i.e. there is a possibility of interaction with other
components during the overall computation of the whole system;

• It is equipped with input and output observation universes to ensure the flow of data
during its execution.

Formal models of components The functionality of a component should then be defined at a
higher level than the implemented code. The suitable way to formally address components is to
consider them as an abstract representation omitting implementation details and only describ-
ing properties relevant to their functionalities. Such a representation is only made by specifying
how inputs drive changes in component states and how outputs are produced. We classically
talk about black box representation. Thus, the internal structure of a system (i.e. how it has
been implemented) is ignored, only the functional or behavioral view of the system (i.e. what
its requirements are) is considered. All possible communications between the system and the
environment are then described via interface. An external observer can observe the system only
through this interface. Such an external observer’s view represents the complete input-output
behaviour of the system. From the point of view of the environment, a black box can be bet-
ter seen as a function achieving at a different time t (that can be discrete or continuous) some
given system functional requirement which makes the inputs In of the system correspond to its
outputs Out. This function depends on the current internal state s ∈ S of the system, and then
of the form y = F (x, s, t) where x, y and s are respectively the input, output and state of the
component under consideration, and t is an instant of time.

A environmental view of a system can therefore be represented in Figure I.1.

SIn(t) Out(t)

Figure I.1 – Black box view of a system

1 - Context 3

Complex systems So far we have seen that the component-based approach is considered a
cost-effective solution for increased modularity and re-usability of system designs. Black box
representations can cope with the increasing heterogeneity of components of different natures
disregarding underlying non-functional details of the components and their internal architec-
tures. This means the global behaviour of a complex system would be less difficult to study
when the underlying subsystems are considered as black box representations. In this way, a
powerful approach to developing complex software systems could be to describe them in a
hierarchical recursive way as interconnections of sub-systems (i.e. components). These sub-
systems are then integrated through architectural connectors that are powerful tools to describe
systems in terms of components and their interactions. Each subsystem can be then either a
complex system itself or simple and elementary enough to be handled entirely.

Hence, the basic idea for modeling complex systems is that, at a high-level of abstraction,
complex systems can be recursively decomposed into a set of subsystems, arriving at subsys-
tems that can be completely handled. Such a formal hierarchical description of a complex sys-
tem usually looks like the construction illustrated in Figure I.2.

C1 C2

op1

C11

C12
op2

C21

C22

C23

op3

Figure I.2 – Compositional view of complex system

Composition is then used for assembling different sub-systems and then forming larger
ones. Such a composition can be seen as an operation taking components as well as the inter-
active nature between them to provide a new more complex component. Hence, this recursive
representation of a complex system as a composition of elementary components using integra-
tion rules allows us to separate the realization of different components and subsystems, and
then makes the conception process more modular, i.e. the composition itself becomes a compo-
nent that can be further composed as if it were itself an atomic component.

Suitable unified view of systems Sub-systems from which complex systems are made, may
indeed be modeled using different specification formalisms depending especially on the sci-
entific disciplines and the model of computations used to specify the interaction between the
different elements of the system. At the moment, there are neither unified models nor unified

4 Chapter I Introduction

tools that can be used to deal with such systems in all their generality. Nevertheless, one can
observe that a common characteristic of sub-systems of most modern systems is that they can be
considered, from a theoretical point of view and at a higher level of abstraction, as state-based
components whose behaviour can only be observed along their interface. Hence, state-based
systems seem to be a natural formal representation of most concrete modern systems such as
digital hardware components, software programs and distributed systems. It turns out it is
becoming more and more difficult to express these systems as algebraic representations i.e. in
terms of a set of complete constructions. Their characteristics, indeed, tend to be seen as ob-
servable entities rather than definable ones. Hence, the semantics of such systems is essentially
observational. All that can be captured in their evolution is their interaction with the environ-
ment, that is to say, the possible input/output between them and the outside world. Inputs are
indeed the signals or data received by the system, and outputs are the signals or data sent from
it. In this setting, coalgebra theory and category theory provide all the necessary concepts to
handle abstractly the observable behaviour of such systems.

Coalgebraic approach to modeling systems Due to this observational view of systems, coal-
gebras are increasingly used as an appropriate abstract model of state-based dynamical systems,
looking for a unified definition of a model from which a great variety state-based models could
be deduced such as: transition systems, automata, process calculi and classes in object-oriented
languages [5, 6, 7, 8]. One of the major contributions in component coalgebraic modeling are
Barbosa’s works [9, 10, 11, 12, 13]. Coalgebras have been used as a semantic model for soft-
ware components for some endofunctor on Set. A component is then presented as an extended
Mealy machine parametrized by a monad T, as is customary in functional programing [14],
acting as a behaviour model. The monad T can indeed handle the different usual computa-
tional effects such as determinism, non-determinism, possible deadlock states, or exceptions
and many more [15, 16]. Barbosa’s approach will be the cornerstone of our modeling. We will
detail it in Section 1.2 of Chapter IV.

1.2 Validation and verification

Correctness and its importance With the increasing complexity of modern software systems,
verification and validation techniques are becoming more and more important. Ensuring the
functional correctness of a system’s behaviour is becoming one of the major challenges nowa-
days in view of dramatic consequences in terms of human lives, economic loss, ecological prob-
lems, etc. caused when the faulty behaviour of a system occurs. System failures are indeed
everywhere to the point that they are so familiar to us that we usually forget them. Some of
them have little impact in our daily life, for example, when our mobile phone is malfunctioning
or our video recorder reacts unexpectedly and wrongly to commands via the remote control.
However, other errors have a huge impact. In history, there is a long list of typical software
bugs that have caused catastrophes in terms of loss of human lives [17, 18] such as Therac-25,
or loss of money such as Ariane 5 crash (costs about 500 million US dollars) and Intel’s Pentium
floating-point division (a loss of about 500 million dollars), etc. All these examples make verifica-
tion and validation phases more expensive (in terms of time and money) than construction, in
most designs.

Testing vs verification To reduce, as much as possible, the risk that a system fails, and so
increase the level of confidence as well as decrease the gap between requirements specifying
the functions that a system is expected to perform and the real implementation of the system,
verification and validation techniques seem to be the best method. These techniques should

1 - Context 5

be implemented automatically. Manual techniques such as peer reviewing have shown their
unsuitability even impossibility in validating system functionalities as it is stated by Wolper
in [19]: "manual verification is at least as likely to be wrong as the program itself". On the other
hand, automatic techniques are widely used in practice and well-accepted in industrial fields.

Three important techniques are mainly used: formal proofs, model checking and testing.
Formal proofs, such as Hoare logic [20], consists in formally expressing the expected properties of
the system and proving that these properties are correct by deduction from a set of axioms and
inference rules. Model checking [21, 22] consists in automatically and algorithmically verifying
whether system properties such as the absence of deadlocks (described in some appropriate
logical formalism such as temporal logic) are satisfied by the system (described as a finite state
model). Testing [23, 24] consists in running the system under test by providing it well-chosen in-
put values (called tests), observing the value of its outputs, and then by comparing the observed
behaviour with that desired, deducing whether the system is correct or not.

When talking about these techniques, the question "which technique is more effective?" di-
rectly arises. This question can be answered according mainly to both characteristics and com-
plexity of the system under validation/verification. In general, verification and testing are best
considered as complementary techniques. In practice, it turns out that they complement each
other, and in most cases, there is a need to apply both to get the desired system quality. Indeed,
though formal proof techniques are based on formal methods and considered to establish sys-
tem correctness exhaustively, they are too hard and tedious to use in practice. In most cases,
they cannot be automatically implemented, and need human help that renders the proof po-
tentially incorrect. Though model checking intends to verify automatically that a system is free
from errors, a close look at reality, however, reveals that it has its own weakness as we state
below:

• it is only as good as the model of the system. In fact, it enables one to check exhaustively
the correctness of a model of the system, but not the real system itself. The fact that a
model has certain properties does not guarantee that the final realization also has the
same properties;

• only desired or well-chosen properties are checked: there is no guarantee of the complete-
ness of all system properties;

• it requires some expertise to be used (for example, some knowledge in logical temporal
formalisms);

• it is hard to be used for systems of realistic size;

• it is impossible to use it in some cases, for instance, when there is no formal model of the
system.

On the other hand, testing techniques can be applied directly to the real implementation,
contrary to model checking or formal proofs that are based on mathematical models rather
than on the real system. This advantage makes testing techniques more used in practice than
other techniques, especially when verification methods seem impossible to be used due to the
complexity of the system or its nature: there is no possibility to build a formal model of the real
system (e.g physics devices, or it is proprietary). However, testing can never be complete as
stated by Dijkstra’s in [25]: "Testing can only show the presence of errors, never their absence".

6 Chapter I Introduction

This is especially due to the too large set of all possible inputs to be submitted to the system.
For example, suppose that a calculator only does both addition and subtraction operations for
numbers ranging from 0 to 20. To test this calculator, it is required to execute both addition and
subtraction operations on all possible combinations of integers in this range. This will require

a total of Σ20
i=12i × 21i+1(= 2× 212 × 1−(42)20

1−42) executions. Then, assuming that testing is done
on a computer that will take 10−7s to input a subset of integers ranging from 0 to 20, execute a
calculator operation, and check if the output (i.e. result of the requested operation) is correct, the

testing execution process will take approximately 2× 212 × 1−(42)20

1−42 × 10−7s which is an order
of years.

Thus, neither verification (both mathematical proofs and model checking) nor testing appear
to be the perfect technique for proving the correctness of programs. They are often used as two
related complementary activities and guide each other.

In this thesis, we are interested in testing, more precisely in defining a testing theory. Our
reasons for focusing our attention on testing techniques to the detriment of verification ones are
twofold:

1. First of all, our ambition is to define a mathematical framework to model complex soft-
ware systems whose important characteristic is their large size. Yet, we have just seen
that, verification methods are limited in their use for such systems.

2. The second reason for our choice is more practical. Indeed, verification methods essen-
tially aim to prove that the systems verify a certain number of formal properties. These
formal properties are expressed in a logic. Then, to address verification in our framework,
we would have had to define a logic (temporal) over our formalism, and then establish a
certain number of properties of this logic such as defining a calculus and proving that this
latter is correct and complete, showing that the logic is adequate with respect to bisim-
ulation (i.e. every couple of bisimilar states satisfy the same set of properties), studying
conditions to preserve properties along integration operators, etc. However, all of this is
often a long-term job that is difficult to address at the same time as the formalism defini-
tion. Nevertheless, the definition of such a logic is primordial, it is therefore naturally a
part of future thesis work.

Software testing Software testing is a process which aims to strengthen the quality of systems
through experimentations with the intent of finding errors in them. It can be used to reveal
the presence of errors, but never their absence [23, 25, 26]. Many kinds of testing have been
proposed that can be mainly classified in accordance with the following three characteristics
(see Figure I.3):

• level of code accessibility: two testing techniques are commonly distinguished: structural
testing (also known as white box) [24] in which system code is examined as to whether it
works as expected, and functional testing (also known as black box) [27] in which system
functionalities are examined without requiring any knowledge of the internal structure of
the system.

• level of abstraction: three testing methods are commonly distinguished: unit testing in
which software or hardware components that cannot be subdivided into other compo-
nents are examined, integration testing in which a larger component built as a combination
of a set of basic components is examined, and system testing in which the complete system
is tested.

1 - Context 7

• aspects we want to test: there are different aspects used to test a system, for example con-
formance testing in which the behaviour of the implementation is tested to check whether it
conforms to the specified behaviour, robustness testing in which an implementation reacts
to unspecified, or "abnormal" environments, etc.

characteristics

accessibility

level of details

functionality

robustness

security

black box white box

unit

integration

system

Figure I.3 – Classification of testing techniques

Since our goal, in this thesis, is to verify the correctness of behaviour of component-based
systems, testing techniques we address here come then within the scope of both unit and inte-
gration functional testing based on conformance testing.

Conformance testing theory Conformance testing is a black box technique for checking cor-
rectness implementation against its specification by means of experimentations [28, 27]. It aims
to check if the observable behaviour of the system under test conforms to a specification with
respect to a particular conformance relation. The underlying idea consists in automatically gen-
erating test cases from a formal model a so-called specification of the system under test. These
test cases are then executed by an external tester on the real system, and based on observed re-
sults, a verdict is generated indicating if the system was successful or not on the test of interest
(or if the test was inconclusive).

Compositional testing As a matter of fact, the exponentially growing complexity and het-
erogeneity of today’s systems give rise naturally to difficulties even the impossibility, in some
cases, of using actual validation and verification methods in practice. It turns out important
aspects for software systems such as heterogeneity, decentralized and networked applications,
etc. are not well-supported by actual modeling and both verification and testing techniques.
This is especially due to the fact that these techniques are limited to scalability of the complex-
ity of actual software systems that are not only large but are also growing dramatically. As in a
state-based components approach, compositional reasoning approaches [29, 30, 31] about sys-
tem correctness is viewed as one of the most promising directions to bridge the gap between
the increasing complexity of systems and actual verification and testing method limits.

8 Chapter I Introduction

The underlying idea behind these emergent approaches is to use "divide-and-conquer" ap-
proaches consisting in breaking down the correction of a complex system into smaller tasks of
lower complexity that involve the correctness of its components. The conclusion for the whole
system correctness is then drawn by combining the results from the verification of the subtasks
following certain compositional reasoning rules without verifying the whole system.

On the first hand, compositional verification aims to infer global properties of complex sys-
tems from properties of their components. It then consists in verifying, given n components
with behaviour models M1, . . . ,Mn that satisfy local properties φ1, . . . , φn respectively, and
op is some composition behaviour operators, if the system op(M1, . . . ,Mn) resulting from the
composition ofM1, . . . ,Mn will satisfy a global property φ. In this way, compositional verifi-
cation techniques avoid combinatorial explosion by decomposing systems into smaller subsys-
tems to which classical verification techniques can be directly applied.

In this sense, compositional testing theory aims to check whether the correctness of the
whole system C = op(C1, . . . , Cn) is established using the correctness of each components Ci
where op is the integration operator of interest. Hence, the problem of compositional testing can
be seen as follows: given implementation models iut1, . . . , iutn, specifications spec1, . . . , specn, an
integration operator op and a conformance relation rel such as iut1, . . . , iutn have been tested
to be rel-correct according to their specifications spec1, . . . , specn respectively, may we con-
clude that their composition op(iut1, . . . , iutn) also rel-correct to the integrated specification
op(spec1, . . . , specn)?

Since, in this thesis, we propose a compositional method for the testing of component-based
systems, we will only address the compositional testing approach.

2 Thesis overview

2.1 Thesis contributions

As stated in the introduction of this chapter, this thesis intends to contribute to two central
topics: "modeling" and "testing" complex software systems. It then consists of two main parts.
The first part, the modeling, intends to propose a generic unified framework from which most
standard state-based systems, especially those which are dedicated to test case generation, can
be deduced, and to define a minimalist set of operators to combine components. The second
part, the testing, intends to propose generic compositional testing aimed at being able to validate
complex software systems.

In particular, the contributions of this research work include:

Unifying formal framework for modeling state-based systems

Based on Barbosa’s approach [9, 32] for component modeling, we propose a formal generic uni-
fied framework for modeling state-based systems. Systems are then modeled as concrete coal-
gebras over the endofunctor H = T(Out ×)In on the category of sets where T is a monad,
and In and Out are two sets of elements which denote respectively inputs and outputs of the
component. Such coalgebraic models will allow us:

1. to abstract away computation situations such as determinism or non-determinism. In-
deed, monads have been introduced in [33, 14] to consider in a generic way a wide range
of computation structures such as partiality, non-determinism, etc. Hence, such a com-
ponent representation allows us to define components independently of any computation
structure.

2 - Thesis overview 9

2. to unify in a single framework a large family of state-based formalisms encompassing
most standard formalisms dedicated to conformance test generation such as Mealy au-
tomata [34, 35], Labeled Transition Systems (LTS) [36, 37], Input-Output Labeled Transi-
tion Systems (IOLTS) [38, 39, 40, 41], etc.

Unifying trace semantics of state-based systems

This way of modeling component behaviour allows us, following Rutten’s works [42], to define
a trace model over components by causal transfer functions. Such functions are dataflow trans-
formations of the form: y = F (x, q, t) where x, y and q are respectively the input, output and
state of the component under consideration, and t is discrete time.

Taking advantage of the definition of components behaviour as transfer functions, defining
a trace model from causal functions allows us to show the existence of a final coalgebra in
the category of coalgebras over Barbosa’s signature H = T(Out ×)In under some sufficient
conditions of the monad T. This final coalgebra is indeed useful when defining the integration
operators and makes easier theorem proofs throughout the thesis.

This representation of system behaviour then forms the first step towards a unified frame-
work that captures not only different usual computations, but also time heterogeneity (i.e. both
discrete and continuous times). Indeed, in this thesis we restrict ourselves to discrete time.
Only formalism heterogeneity and component nature are addressed. However, there is other
current work done in B. Golden’s thesis extending our framework to be able to take into account
continuous time using non-standard analysis [43].

Calculus of operators

We propose a calculus of standard operators used to build larger components from smaller ones.
We then define two basic integration operators, product and feedback, and defend the idea that
most standard integration operators such as sequential, concurrent and parallel composition
operators and synchronous product can be obtained by composition of product and feedback.
This will lead us to define inductively more complex integration operators, the semantics of
which will be partial functors over categories of components. Hence, a system will be built by a
recursive hierarchical process through these integration operators from elementary systems or
basic components.

Generic conformance testing theory

From the genericity of the formalism developed in this thesis, we propose to define a generic
conformance testing theory for components. This testing theory will be applicable de facto to
all state-based formalisms, instances of our framework. There are several conformance testing
theories in literature [40, 44, 45, 46, 47, 48] that differ by the considered conformance relation
and algorithms used to generate test cases. Although most of these theories could be adapted to
our formalism, we propose here to extend the approach defined in [45] in the context of IOSTS
formalism. The advantage of the testing theory proposed in [45] is that it is based on the confor-
mance relation ioco that received much attention by the community of formal testing because it
has shown its suitability for conformance testing and automatic test derivation. Furthermore,
test generation algorithms proposed in [45] are simple in their implementation and efficient in
their execution. Hence, test purposes will be defined as some particular subtrees of the execu-
tion tree built from our trace model for components. We will then define an algorithm which
will generate test cases from test purposes. As in [45], this algorithm will be given by a set
of inference rules. Each rule is dedicated to handle an observation from the system under test

10 Chapter I Introduction

iut or a stimulation sent by the test case to the iut. This testing process leads to a verdict about
implementation correctness with respect to its associated specification.

This generic conformance testing theory is the first step toward the testing of complex soft-
ware systems made of interacting components.

Compositional testing theory

We further propose to define a compositional testing theory that aims to test an integrated
system assuming that its underlying components have already been tested in isolation and are
correct [31]. The problem that we address can be seen as follows: if single components of a
system conform to their specifications, what can be said concerning conformance of the whole
system in accordance with its specification? We will show that a positive answer to this question
cannot be obtained without any assumption about both specifications and implementations.

Strengthening components quality by means of projection mechanism

We propose a component-based approach to strengthen the quality of components taking into
account their involvement in the global system that encapsulates them. The underlying idea
consists in showing how to re-enforce the correctness of each component involved in a global
system by generating suitable test cases for them. This will be done by defining a projection
mechanism that, from a behaviour of the global system, will help to focus on behaviours of
sub-systems that typically occur in the whole system [49].

2.2 Plan of the thesis

The rest of the thesis is split into three parts organized as follows.

Part I provides all theoretical notions we use in this thesis. It contains two chapters where we
introduce basic notions of both category and coalgebra theories.

In Chapter II we describe the different basic concepts and notions of category theory that
serves us as formal background in the remaining chapters.

In Chapter III we describe the basic concepts and notions of coalgebras that will be useful in
this thesis.

Part II is the core of the modeling part. It contains two chapters where we introduce a formal
framework to model and unify state-based systems, and a calculus of operators to combine
components in order to build larger components.

In Chapter IV we define a generic formal framework to define components and their trace
models by means of causal transfer functions. We also present some theoretical
results regarding the existence and uniqueness of a final model in the category
of components.

In Chapter V we describe the basic integration operators: cartesian product and both relaxed
and synchronous feedback as well as how to combine them to build more com-
plex integration operators. We also define the notion of a system that will be
the result of the composition of basic components using complex integration
operators.

2 - Thesis overview 11

Part III is the core of the testing part. It contains three chapters where we introduce a brief
overview of black-box conformance testing, our generic conformance testing for components
defined in Part II, and our compositional testing for component-based systems.

In Chapter VI we describe the formal testing background used in the remaining chapters of
the thesis. We then introduce the testing concepts presented in the international
standard IS-9646: "Conformance Testing Methodology and Framework" [50, 51]
and their formalization introduced in the setting of "Formal Methods in Con-
formance Testing" (FMCT) project [52].

In Chapter VII we present our generic conformance testing theory for components defined in
Chapter IV. The work presented in this chapter is mainly inspired from the
conformance testing theory developed in [45, 53]. In our theory of confor-
mance testing, behaviors of specifications and implementations under test are
modeled as components over the signature H = T(Out×)In, and the confor-
mance relation is defined as a partial inclusion of their traces. We also present
an algorithm for test case generation from the specification. This algorithm
uses test purposes to eliminate the part of the specification which is not of in-
terest for testing. The basic idea is to generate a finite computation tree from
the specification of the system whose set of paths embodies the set of all be-
haviours of the specification. Test purposes are then used to tag a finite set
of paths of interest of testing in the finite computation tree. Thereby, test cases
will be generated by exploring the tagged finite computation tree starting from
the initial state, and switching between sending stimuli to the implementation
and waiting for output of the implementation according to certain inference
rules as long as a verdict is not reached. At the end of the chapter, we show
both correctness and completeness of generated test cases with respect to spec-
ifications and test purposes.

In Chapter VIII we present a compositional method for the testing of component-based sys-
tems described in Part II. The main idea is to apply "divide-and-conquer" ap-
proaches to global behaviour of a system from behaviours of its subsystems
whose complexity is manageable. Instead of entirely testing the global system,
the compositional testing approach we propose first decomposes the system
under test into small subsystems and then tests each of them separately. The
size of a subsystem is then smaller than the size of the whole system, and thus
the risk of explosion of state space is significantly decreased.

We also propose a method for test purposes derivation for a given component
of an integrated system from the behaviours of the components that constitute
it. This last work is based on projection mechanisms that were first developed
in [49].

12 Chapter I Introduction

Part I

Theoretical preliminaries

15

We introduce in this part the basic concepts of both category and coalgebra theories which
will be useful throughout the thesis. We will rely on concrete examples to illustrate the expres-
sive power of these two theories in systems modeling. Our aim therefore is to simply show that
using these two theories, a unified formal framework for modeling state-based systems can be
provided. For more interested readers, we refer to [5, 6, 54, 55, 56, 57, 58].

16

Chapter II

Category theory

1 Category . 18

1.1 Category definition . 18

1.2 Constructions of categories . 19

1.3 Properties of arrows . 20

2 Universal properties . 21

2.1 Commutative diagrams . 21

2.2 Initial and terminal objects . 22

2.3 Product . 22

2.4 Coproduct . 23

2.5 Exponents . 24

3 Functors and natural Transformations . 26

3.1 Functors . 26

3.2 Natural transformations . 29

3.3 Heterogeneous Compositions . 30

4 Monads in category theory . 32

4.1 Definition . 32

4.2 A working example . 32

4.3 More examples . 34

4.4 Category of Kleisli . 36

Category theory is a branch of mathematics that was developed by MacLane and Barr [57, 58]
in 1940. Since its appearance, it has been used as a powerful tool allowing the generalization
of the concept of algebraic structures such as vectorial spaces, groups, topological spaces, etc.,
and the relations between them. In this chapter we describe the most fundamental concepts of
category theory that will be used to define our formal framework.

18 Chapter II Category theory

1 Category

1.1 Category definition

Definition 1.1 (Category) A category C consists of:

• A collection Obj(C) of objects;

• For each pair of objects A, B ∈ Obj(C), a collection Hom(A, B) of arrows (or morphisms or also
maps) f : A −→ B from A to B;

• A is the domain and B is the codomain of f : A −→ B;

• For each object A ∈ Obj(C), an identity arrow idA : A −→ A;

• For each pair of arrows f : A −→ B and g : B −→ C, a composite arrow g ◦ f : A −→ C.

These data have to satisfy the following laws:

• Associativity: if A
f−→ B

g−→ C h−→ D, then

(h ◦ g) ◦ f = h ◦ (g ◦ f)

• Identity composition: if f : A −→ B, then

f ◦ idA = idB ◦ f

Remark: in case of ambiguity, the operations of composition, the identities and the set of arrows
are denoted by the name of the corresponding category i.e. we write: idC, f ◦C g and HomC.

Example 1.1 As a concrete example, we consider a set of objects Obj = {A, B} and a set of arrows
Hom = { f : A −→ B, h : B −→ A, g : B −→ A, idA, idB} that are depicted in Figure II.1 (on the left
side) such that:

g ◦ f = h ◦ f = idA and f ◦ h = f ◦ g = idB

A B
f

g

h

idA idB C D E
f

m

idC

g

h

idD

idE

Figure II.1 – Examples of categories

These objects and arrows do not form a category. That is due to the fact that the property of associativity
is not verified: there are three arrows f1, f2 and f3 such that the couples (f1, f2) and (f2, f3) can be
composed and (f3 ◦ f2) ◦ f1 6= f3 ◦ (f2 ◦ f1). For example:

(h ◦ f) ◦ g = idA ◦ g
= g

h ◦ (f ◦ g) = h ◦ idB

= h

1 - Category 19

Similarly to above, it is not hard to check that the objects and arrows that are depicted in Figure II.1 (on
the right side) and satisfy (h ◦ f = g ◦ f = m) form a category.

Example 1.2 Table II.1 shows some mathematical structures that can be perceived as special types of
examples of categories. All of these examples are categories whose objects are sets with particular mathe-
matical structure and whose arrows are functions preserving that structure, so-called morphisms.

Category Objects Arrows

Set sets applications

Poset ordered sets monotone applications

Grp groups homomorphisms

Top topological spaces continuous applications

Vectk vectorial K-spaces linear applications

Table II.1 – Examples of categories

A category is small if its objects and arrows constitute sets; otherwise it is large.

1.2 Constructions of categories

In this subsection, we describe some usual constructions of categories.

Definition 1.2 (Subcategory) Let C and D be two categories. We say that C is a subcategory of D if:

• All the objects of C are objects of D: Obj(C) ⊆ Obj(D);

• All the arrows of C are arrows of D: for each pair of objects A, B ∈ Obj(C), HomC(A, B) ⊆
HomD(A, B);

• If A is an object of C then its identity idA in C is in D: for each object A ∈ C, idC
A = idD

A ;

• If f : A −→ B and g : B −→ C in C, then the composite in C f ◦ g is in D and is the composite
in D: f ◦C g = f ◦D g.

We say that C is a full subcategory of D if C is a subcategory of D such that for each pair of
objects A, B ∈ Obj(C), HomC(A, B) = HomD(A, B).

From any category C, it is possible to construct another category called dual of C by reversing
all the arrows. That is to say, the source and the target of each arrow of C have to be reversed.

Definition 1.3 (The dual of a category) Let C be a category. The dual (or opposite) of C, noted
Cop, is the category whose objects and arrows are the objects and arrows of C, but the domain and the
codomain of each arrow have been reversed. Then we have:

domain(f) = A in Cop if codomain(f) = A in C

codomain(f) = A in Cop if domain(f) = A in C

f = idA in Cop if f = idA in C

h = g ◦ f in Cop if h = f ◦ g in C

Example 1.3 If P is a poset, then the dual of the category P is the category determined by a poset Pop: if
(x, y) ∈ HomP, then (y, x) ∈ HomPop

. For instance, the dual of the poset (Z,≤) is (Z,≥).

20 Chapter II Category theory

1.3 Properties of arrows

One of the principle characteristics of the theory of categories is its powerful unifying concepts
across many branches of mathematics. This characteristic often leads to categorical definitions
that do not involve the objects of a category in the sense that the property of one object is entirely
defined in terms of the external interactions of that object with other objects.

In the following, we give the categorical definitions of some concepts that are standard in
the set theory such as injectivity (monomorphism), surjectivity (epimorphism) and bijectivity
(isomorphism). These definitions will be only defined with the concept of arrows of a category,
without involving its objects (i.e. objects make no sense of such definitions).

Monomorphisms. A function f : X −→ Y in Set is injective if for any element y in Y, there is
at most one element x in X such that y = f (x). This concept of injective function can be easily
redefined in the category theory without using elements of X or Y. This is done by replacing
the elements of X by arbitrary arrows into X.

Definition 1.4 (Monomorphism) Let C be a category and f : X −→ Y be a arrow of C. We say that
f is a monomorphism (or monic) if for any object Z ∈ Obj(C) and any arrows g, h : Z −→ X ∈
HomC(Z, X): if f ◦ g = f ◦ h, then g = h.

Z X Y

h

g

f

We also say that f is left-cancellative.

Epimorphisms. A function f : X −→ Y in Set is surjective if for any element in Y, there is at
least one antecedent. Like injective functions, surjective functions can also only be redefined in
terms of arrows as follows:

Definition 1.5 (Epimorphism) Let C be a category and f : X −→ Y be a morphism of C. We say
that f is a epimorphism (or epic) if for any object Z ∈ Obj(C) and any arrows g, h : Y −→ Z ∈
HomC(Y, Z): if g ◦ f = h ◦ f , then g = h.

X Y Z
f

g

h

We also say that f is right-cancellative.

Isomorphism. The word "isomorphic" is usually used in mathematics to express distinction
of objects in form, but not in number. Before stating its categorical definition, we give the
following definition:

Definition 1.6 (Section and retraction) Let C be a category and f : X −→ Y ∈ HomC(X, Y):

• We say that an arrow r : Y −→ X is a section (or right inverse) of f , if f ◦ r = idY;

• We say that an arrow l : Y −→ X is a retraction (or left inverse) of f , if l ◦ f = idX .

2 - Universal properties 21

Definition 1.7 (Isomorphism) Let C be a category and f : X −→ Y be an arrow of C. We say that f
is an isomorphism if there exists an arrow g : Y −→ X ∈ HomC(Y, X) such that g is both a section
and a retraction of f i.e. :

f ◦ g = idY and g ◦ f = idX

X Y

X Y

idX

f

idY

f

g

A function f : X −→ Y in Set is bijective if for every element y ∈ Y, there is exactly one element
x ∈ X such that f (x) = y. Alternatively, a function f is bijective if and only if there exists
function f−1 : Y −→ X such that their compositions f−1 ◦ f = idY and f ◦ f−1 = idX . Then,
bijective functions in Set are obviously isomorphisms. However, a morphism which is both a
monomorphism and an epimorphism is not necessarily an isomorphism (it is a bimorphism)
unlike a bijection function which is both injective and surjective.

Example 1.4 The inclusion of Z into Q in the category of abelian groups Ab is both a monomorphism
and an epimorphism, but it is not isomorphism.

If there is such an isomorphism from X to Y, one often writes X ∼= Y.

2 Universal properties

Universal properties are the properties that ensure existence and uniqueness of a given con-
struction under some conditions. They are generally formalized as follows:

for any . . . there is a unique . . . such that . . .

2.1 Commutative diagrams

Categorical properties are often expressed in terms of commuting diagrams. Informally, a dia-
gram in a category C is an oriented graph whose nodes are labeled with objects of C and whose
edges are labeled with arrows in C in such a way that source and target nodes of an edge are
labeled with source and target objects of the labeling arrow.

Definition 2.1 (Category diagram) A diagram of a category C is an oriented graph G = (V, E)
where:

• V ⊆ Obj(C) and V has a finite cardinality;

• E is a set of directed edges. The edges of an objectX to an object Y are arrows from X to Y and are
finite in number.

Definition 2.2 (Commutative diagram) Let C be a category and G = (V, E) be a diagram in C.

• A path in G is a non-empty sequence of edges such that the target node of each edge is the source
node of the next edge in the sequence;

22 Chapter II Category theory

• G is said to commute if, for every pair of nodes X, Y ∈ V, all paths between them lead to the same
result by composition.

Hence, verifying in a category C that the diagram below is commutative is equivalent to
verifying that g2 ◦ f1 = f2 ◦ g1.

A B

C D

f1

f2

g1 g2

2.2 Initial and terminal objects

Definition 2.3 (Initial et terminal objects) Let C be a category. An object I of C is called initial if
there is exactly one arrow I −→ X for each object X of C. An object T of C is called terminal if there is
exactly one arrow X −→ T for each object X of C. An object that is both initial and terminal is called a
zero.

Proposition 2.1

1. If a category has an initial object, it is unique up to isomorphism.

2. If a category has a terminal object, it is unique up to isomorphism.

Note: The expression "up to isomorphism" means that if we have two constructions of such an
object, there is one and only way to convert one into the other and vice-versa.

Example 2.1 In Set, the initial object is the empty set while any singleton set is a final object. As
already stated, when reasoning at the level of a category C, its objects are abstracted away and their
internal structures are not available. Hence, equality between the objects of a category makes no sense,
the real criterion to distinguish them is the isomorphism. Then, objects that cannot be distinguished
in such a category are called isomorphic. For instance, the sets {Hello}, {1000}, {∗} or {Ok} are all
isomorphic: just renaming all elements of a set does not really give us another set. From this point of
view, the symbol 1 = {∗} has been chosen to denote the isomorphism class of all singletons. In other
words, 1 is the final object in Set.

2.3 Product

Definition 2.4 (Product) Let C be a category. The product of two objects X, Y ∈ Obj(C) is a new
object X × Y ∈ Obj(C) with two projection morphisms π1 : X × Y −→ X and π2 : X × Y −→ Y
which are universal: for each pair of morphisms f : Z −→ X and g : Z −→ Y in C, there is a unique
morphism 〈 f , g〉 : Z −→ X×Y in C, making the following diagram commute1:

X X×Y Y

Z

π1 π2

f g〈 f , g〉

1The dashed notation is used to express the uniqueness of morphisms.

2 - Universal properties 23

Proposition 2.2 Let C be a category. Let X, Y ∈ Obj(C). If A is an object of C, π1 : A −→ X and
π2 : A −→ Y two arrows of C, and (f , g) 7→ 〈 f , g〉 a function that associates to each pair of arrows
f : Z −→ X and g : Z −→ Y the arrow Z −→ A such that the following equations:

• π1 ◦ 〈 f , g〉 = f

• π2 ◦ 〈 f , g〉 = g

• 〈π1 ◦ π2〉 = idA

• 〈 f , g〉 ◦ ϕ = 〈 f ◦ ϕ, g ◦ ϕ〉

are satisfied for every objects Z and Z′, and for every arrows f : Z −→ X, g : Z −→ Y and ϕ : Z′ −→
Z, then (A, π1, π2) is a product of X and Y in C.

Example 2.2 The cartesian product of two sets X and Y is generally defined by:

X×Y = {(x, y) | x ∈ X and y ∈ Y}

This product can be easily redefined as an instance of the general notion of product of two objects of such a
category. It is therefore defined by a triplet (X×Y, π1, π2) such that π1 and π2 are projection functions
defined by:

π1 : X×Y −→ X π2 : X×Y −→ Y
(x, y) 7→ x (x, y) 7→ y

Given a set Z and two applications f : Z −→ X and g : Z −→ Y. It is not hard to see that there is a
unique function 〈 f , g〉 : Z −→ X × Y such that π1 ◦ 〈 f , g〉 = f , π2 ◦ 〈 f , g〉 = g, 〈π1 ◦ π2〉 = idX×Y

and 〈 f , g〉 ◦ h = 〈 f ◦ h, g ◦ h〉 : Z′ −→ X×Y where h : Z′ −→ X×Y.

The product does not only apply to sets, but also to functions. For functions f : X −→ X′

and g : Y −→ Y′, one has:

f × g : X× X′ −→ Y×Y′ given by (x, y) 7→ (f (x), g(x))

This can also be differently defined in terms of projection functions as follows: f × g = 〈 f ◦
π1, g ◦ π2〉. It is easily verified that the operation × on functions satisfies:

idX × idY = idX×Y and (f ◦ h)× (g ◦ k) = (f × g) ◦ (h× k)

Therefore, × applies both sets and functions, and preserves domains, identities and composi-
tion.

2.4 Coproduct

Every notion in category theory has its dual. Hence, the dual of product is coproduct.

Definition 2.5 (Coproduct) Let C be a category. The coproduct of two objects X and Y of Obj(C)

is a new object X + Y ∈ Obj(C) with two coprojection morphisms κ1 : X −→ X + Y and κ2 : Y −→
X +Y which are universal: for each pair of arrows f : X −→ Z and g : Y −→ Z in C, there is a unique
morphism [f , g] : X + Y → Z in C, making the following diagram commute:

X X + Y Y

Z

κ1 κ2

f g[f , g]

24 Chapter II Category theory

Proposition 2.3 Let C be a category. Let X, Y ∈ Obj(C). If A is an object of C, κ1 : X −→ A and
κ2 : Y −→ A two arrows of C, and (f , g) 7→ [f , g] a function that associates to each pair of arrows
f : X −→ Z and g : Y −→ Z, the arrow A −→ Z such that the following equations:

• [f , g] ◦ κ1 = f

• [f , g] ◦ κ2 = g

• [κ1 ◦ κ2] = idA

• ϕ ◦ [f , g] = [ϕ ◦ f , ϕ ◦ g]

are satisfied for every objects Z and Z′, and for every arrows f : X −→ Z, g : Y −→ Z and ϕ : Z −→
Z′, then (A, κ1, κ2) is a coproduct of X and Y in C.

Example 2.3 The coproduct (or sum, or disjoint union) of two sets X and Y is generally defined by:

X + Y = {〈0, x〉 | x ∈ X} ∪ {〈1, y〉 | y ∈ Y}

The components 0 and 1 are useful to force this union to be disjoint. They can be considered as tags used
to recognize the elements of X and Y in X + Y. Like the cartesian product, the coproduct of two sets can
be seen as an instance of the general definition of coproduct described above. It is therefore defined by a
triple (X + Y, κ1, κ2) such that κ1 and κ2 are coprojection functions defined by:

κ1 : X −→ X + Y κ2 : Y −→ X + Y
x 7→ 〈0, x〉 Y 7→ 〈1, y〉

Given a set Z and two applications f : X −→ Z and g : Y −→ Z. It is not hard to verify that there is a
unique function [f , g] : X + Y −→ Z such that [f , g] ◦ κ1 = f , [f , g] ◦ κ2 = g, [κ1 ◦ κ2] = idX+Y and
h ◦ [f , g] = [h ◦ f , h ◦ g] : Z′ → X + Y where h : Z −→ Z′.

The coproduct of two functions f : X −→ X′ and g : Y −→ Y′ is f + g : X + X′ −→ Y + Y′

with:

(f + g)(u) =

{
〈0, f (x)〉 if u = 〈0, x〉

〈1, g(y)〉 if u = 〈1, y〉

This can also be differently defined in terms of coprojection functions as follows: f + g =

[κ1 ◦ f , κ2 ◦ g]. It is easy to verify that the operation + on functions preserves identities and
composition:

idX + idY = idX+Y and (f ◦ h) + (g ◦ k) = (f + g) ◦ (h + k)

2.5 Exponents

Definition 2.6 (Exponent) Let C be a category with products ×. The exponent2 of two objects X, Y ∈
Obj(C) is a new object YX ∈ Obj(C) with an evaluation morphism:

ev : YX × X −→ Y

2The object YX is read: Y is exponent of X.

2 - Universal properties 25

such that: for each morphism (sometimes called currying) f : Z × X −→ Y in C, there is a unique
abstraction morphism ΛX(f) : Z −→ YX , making the diagram commute:

YX × X Y

Z× X

ev

ΛX(f)× idX f

Let us note here that the arrow ΛX : Z → YX forms the terminal object in a category whose
objects are the diagrams of the form:

A× X
f−→ Y

and the arrows from an object A×X
f−→ Y to an object B×X

g−→ Y are the arrows ϕ : A −→ B
such that the following diagram commutes:

A× X Y

B× X

f

ϕ× idX g

Proposition 2.4 Let C be a category with products ×. Let X, Y ∈ Obj(C). If Z is an object of C, ev :
Z×X −→ Y an arrow of C and f 7→ ΛX(f) a function that associates to every arrow f : A×X −→ Y,
an arrow A −→ Z such that the following equations:

• ev ◦ (ΛX(f)× idX) = f

• ΛX(ev) = idZ

• ΛX(f) ◦ ϕ = ΛX(f ◦ (ϕ× idX))

are satisfied for every object A and B, and for every arrow f : A× X −→ Y and ϕ : B −→ A, then
(Z, ev) is an exponent of Y and X in C.

Example 2.4 Let us define the exponent of two sets X and Y as an instance of the general categorical
definition of exponents given above. So, given two sets X and Y, the set of functions from X to Y can
embody in the object YX . This set is defined by:

YX = { f | f : X −→ Y is a total function}

The evaluation function ev can be considered as the following application:

ev : YX × X −→ Y
(f , x) 7→ f (x)

which sends each pair (f , x) to f (x), the value of f for x.

Now, let us consider the function f : Z× X −→ Y and then define the abstraction function ΛX(f):

ΛX(f) : Z −→ YX

z 7→ (x 7→ f (z, x))

26 Chapter II Category theory

which sends z ∈ Z to the function x 7→ f (z, x) that maps x ∈ X to f (z, x) ∈ Y.

Let us verify that the exponent of two sets X and Y is defined by the triple (YX , ev, ΛX). For this, we
need to prove the following equations:

ev ◦ (ΛX(f)× idX) = f (II.1)

ΛX(ev) = idYX (II.2)

ΛX(f) ◦ ϕ = ΛX(f ◦ (ϕ× idX)) (II.3)

hold for every arrow f : Z× X −→ Y and ϕ : Z′ −→ Z.

For Equation II.1, one has: ev ◦ (ΛX(f)× idX)(z, x) = ev((x 7→ f (z, x)), x) = f (z, x)

For Equation II.2, one has: ΛX(ev)(f) = (x 7→ ev(f , x)) = f (x)

For Equation II.3, one has:
ΛX(f) ◦ ϕ(z′) = ΛX(f)(ϕ(z′)) = (x 7→ f (ϕ(z′), x))
and ΛX(f ◦ (ϕ× idX))(z′) = (x 7→ f ◦ (ϕ× idX))(z′, x) = (x 7→ f (ϕ(z′), x))

Thus, the exponent of two sets X and Y is defined by the triple (YX , ev, ΛX).

3 Functors and natural Transformations

3.1 Functors

The notion of functors has been defined as a generalization of functions in category theory.
Hence, functors are structure-preserving maps between categories. They transpose the objects
and arrows of a category to another one. A functor F from a category C to a category D then
associates to each object X ∈ Obj(C) an object Y ∈ Obj(D) and to each arrow f : X −→ Y ∈
HomC(X, Y) an arrow F(f) ∈ HomD(F(X), F(Y)), while preserving identity and composition
of arrows.

Definition 3.1 (Functor) Let C and D be two categories. A functor F : C −→ D consists of:

• A function Fo : Obj(C) −→ Obj(D), called object function, that associates to every object
X ∈ Obj(C), an object Fo(X) ∈ Obj(D) and

• A family of functions FX,Y : Hom(X, Y) −→ Hom(Fo(X), Fo(Y)) indexed by couples (X, Y) of
objects in Obj(C). FX,Y is called arrow function and associates to every arrow f : X −→ Y ∈
HomC(X, Y) an arrow FX,Y(f) : Fo(X) −→ Fo(Y) in HomD(Fo(X), Fo(Y)).

Both identity and composition properties have to be satisfied:

• For every object X ∈ Obj(C), FX,X(idC
X) = idD

Fo(X);

• For every pair of morphisms f : X −→ Y and g : Y −→ Z, FX,Z(g ◦C f) = FY,Z(g) ◦D FX,Y(f).

A functor is called endofunctor if it maps a category to itself.

In the following, the indexes o and X,Y of Fo and FX,Y will be clarified when this is necessary in
order to avoid any complications.

3 - Functors and natural Transformations 27

Example 3.1 (Forgetful functors) Forgetful functors are functors which send objects of a category to
objects of another category by forgetting certain properties of objects. For example, the functor F :
Grp −→ Set which maps a group to its underlying set while forgetting its mathematical structure and
a group homomorphism to its underlying function of sets, is a forgetful functor.

Example 3.2 (Product, coproduct, exponent) The product × (respectively the coproduct +) defined
in Subsection 2.3 (respectively in Subsection 2.4) give rises to a functor × : Set× Set −→ Set, from
the product category (respectively the coproduct category) of Set× Set of Set with itself, to Set. The
exponent (defined in Subsection 2.5) is also a functor Setop × Set −→ Set which involves a dual
category for its first argument.

In the following, we give three examples of functors:

3.1.1 Powersets

The powerset functor P : Set −→ Set maps any set X to its powerset i.e. the set of all subsets of
X:

P(X) = {U | U ⊆ X}

and any function f : X −→ Y to the function:

P(f) : P(X) −→ P(Y)
U ⊆ X 7→ { f (x) | x ∈ U} = {y ∈ Y | ∃x ∈ X, f (x) = y ∧ x ∈ U}

The powerset operation is indeed a functor because it preserves identities and composition:

P(idX)(U) = {idX(x) | x ∈ U}
= {y ∈ X | ∃x ∈ X, idX(x) = y ∧ x ∈ U}
= {y ∈ X | ∃x ∈ X, x = y ∧ x ∈ U}
= {x ∈ X | x ∈ U}
= U

(P(g) ◦ P(f))(U) = {z ∈ Z | ∃y ∈ Y, g(z) = z, and ∃x ∈ X, f (x) = y and x ∈ U}
= {z ∈ Z | ∃y ∈ Y, g(f (x)) = z and x ∈ U}
= {z ∈ Z | ∃y ∈ Y, g ◦ f (x) = z and x ∈ U}
= P(g ◦ f)(U)

Finally, the finite powerset of a set X will be denoted by Pfin(X) = {U | U ⊆ X ∧ U finite}.

3.1.2 Free monoid

The free monoid functor Mon : Set −→ Set associates to any set X the set of all finite sequences
over X (including the empty one):

Mon(X) = X∗ = {〈x0, x1, . . . , xn〉 | ∀0 ≤ i ≤ n, xi ∈ X}

and to any function f : X −→ Y the function:

Mon(f) = f ∗ : Mon(X) → Mon(Y)
〈x0, x1, . . . , xn〉 7→ 〈 f (x0), f (x1), . . . , f (xn)〉

28 Chapter II Category theory

3.1.3 Polynomial functors and Kripke polynomial functors

Polynomial functors are functors Set −→ Set built up inductively from simple basic functors,
using products, coproducts and exponents for forming new functors.

Definition 3.2 (Polynomial Functors) The class of polynomial functors is inductively defined as
the least collection of functors Set −→ Set satisfying the following clauses:

1. The identity functor id : Set −→ Set is a polynomial functor;

2. For any set K, the constant functor K : Set −→ Set is a polynomial functor. This functor maps
every set X to K, and every function f : X −→ Y to the identity idK : K −→ K;

3. If F1 and F2 are polynomial functors, then their product F1 × F2 is also a polynomial functor. This
functor3 maps every set X to the product F1(X) × F2(X) and every function f to the product
F1(f)× F2(f);

4. If F1 and F2 are polynomial functors, then their coproduct F1 + F2 is also a polynomial functor.
This functor maps every set X to the coproduct F1(X)+ F2(X) and every function f to the product
F1(f) + F2(f);

5. For any set E, if F is a polynomial functor, then the exponent FE is also a polynomial functor. This
functor maps every set X to the exponent F(X)E and every function f : X −→ Y to the function
F(f)E = F(f)idE which maps h : E −→ F(X) to F(f) ◦ h : E −→ F(Y).

If we add both the power set functor and the free monoid functor, we obtain Kripke polynomial
functors:

Definition 3.3 (Kripke polynomial functors) The class of Kripke polynomial functors is the su-
perset of polynomial functors obtained by the rules defined in Definition 3.2, with two additional rules:

1. If F is a Kripke polynomial functor, then the powerset P(F) is also4 Kripke. This functor maps
every set X to P(F(X)), and every function f to P(F(f)(X));

2. If F is a Kripke polynomial functor, then the free monoid Mon(F) is also Kripke polynomial functor.
This functor maps every set X to Mon(F(X)), and every function f to Mon(F(f)(X)).

Occasionally, for technical reasons, we will need to restrict ourselves to the finite Kripke polyno-
mial functors that are Kripke polynomial functors where all powersetsP() are finite powersets
Pfin().

3.1.4 The category of category

The category of category, noted Cat, has all small categories as objects and all functors between
such categories as arrows. The composition of two functors F : A −→ B and G : B −→ C is
G ◦ F : A −→ C defined for any object A of A by G ◦ F(A) = G(F(A)) and for any arrow f of
A by G ◦ F(f) = G(F(f)).

3 See Sections 2.3, 2.4 and 2.5 for the definitions of product, coproduct and exponent respectively.
4See Subsections 3.1.1 and 3.1.2 for the definitions of powerset and monoid respectively.

3 - Functors and natural Transformations 29

3.2 Natural transformations

A natural transformation provides a way to transform one functor into another while respecting
the structure of the categories involved. Given two parallel functors i.e. with the same domain
and codomain:

C D

F

G

For each object X in C, we can associate two objects F(X) and G(X) in D that should be the
source and the target of an arrow τX : F(X) −→ G(X) in D:

X

F(X)

G(X)

F

G

τX

Thus, we have a collection of arrows τX : F(X) −→ G(X) ∈ D, indexed by objects X ∈ Obj(C).
This collection is called a natural transformation from F to G. Hence, natural transformations
define morphisms between functors.

Definition 3.4 (Natural transformation) Let C, D be two categories. Let F, G : C −→ D be two
parallel functors between C and D. A natural transformation from F to G is a C-object indexed family
of morphisms in D τ = (τX)X∈obj(C) : F =⇒ G such that:

τY ◦ F(f) = G(f) ◦ τX

for every arrow f : X −→ Y in C.

X

Y

F(X)

G(X) F(Y)

G(Y)

C

D

f

F

G

τX
F(f)

τY
G(f)

F

G

Note: τX is called the component at X of the natural transformation τ.

Example 3.3 Consider the finite powerset functor Pfin : Set −→ Set and the free monoid functor
Mon : Set −→ Set. There is a natural transformation τ : Mon =⇒ Pfin that associates to every set X a
function τX : Mon(X) −→ Pfin(X) which is defined for every sequence 〈x0, x1, . . . , xn〉 ∈ Mon(X) by:

τX(〈x0, x1, . . . , xn〉) = {x0, x1, . . . , xn}

30 Chapter II Category theory

This operation is indeed natural because the following diagram commutes for any function f : X −→ Y:

X

Y

Mon(X)

Pfin(X)

Mon(Y)

Pfin(Y)f

Mon

Pfin

τX

Mon(f)

τY

Pfin(f)Mon

Pfin

That is to say, for each sequence 〈x0, x1, . . . , xn〉 ∈ Mon(X), one has:

(τY ◦Mon(f))(〈x0, x1, . . . , xn〉) = (Pfin(f) ◦ τX)(〈x0, x1, . . . , xn〉)

(τY ◦Mon(f))(〈x0, . . . , xn〉) = τY(Mon(f)(〈x0, . . . , xn〉)
= τY(〈 f (x0), . . . , f (xn)〉)
= { f (x0), . . . , f (xn)}

(Pfin(f) ◦ τX)(〈x0, . . . , xn〉) = Pfin(f)(τX(〈x0, . . . , xn〉))
= Pfin(f)({x0, . . . , xn})
= { f (x0), . . . , f (xn)}

3.3 Heterogeneous Compositions

3.3.1 Functor categories

Given three parallel functors: F, G and H from C to D and two natural transformations between
them: τ : F =⇒ G and τ′ : G =⇒ H such that for each X ∈ Obj(C), one has (τ ◦ τ′)X = τX ◦ τ′X
:

F(X) G(X) H(X)
τX τ′X

(τ′ ◦ τ)X

We can form a new category called functors category and noted CD having as objects all functors
from C to D and as arrows the natural transformations between those functors. It is obvious that
the composition of natural transformations is a natural transformation, that this composition is
associative, and that any identity natural transformation acts as a unit.

3.3.2 Heterogeneous compositions

Natural transformations may be composed with functors to get new natural transformations.
Let C, D, C′ and D′ be categories, let F, F′ : C −→ D, G : C′ −→ C and G′ : D −→ D′ be
functors and let τ : F =⇒ F′ be a natural transformation as the following diagram shows:

3 - Functors and natural Transformations 31

C′ C D D′
G′

F

F′

G
τ

There are two ways to compose natural transformations and functors:

1. Composing G with τ leads to a new natural transformation from G ◦ F to G ◦ F′ that is
usually noted Gτ (not G ◦ τ) in order to distinguish it from the usual composition. This is
a composition of heterogeneous objects. It is not hard to see that Gτ makes the following
diagram commute:

X

Y

(G ◦ F)(X)

(G ◦ F′)(X)
(G ◦ F)(Y)

(G ◦ F′)(Y)
f

G ◦ F

G ◦ F′

(Gτ)X

(G ◦ F)(f)

(Gτ)Y

(G ◦ F′)(f)G ◦ F

G ◦ F′

Let us note here that the functor G impacts only arrows. That is to say that the composition
is only made between the "arrow function" of F and the natural transformation τ.

2. Composing τ with G′ leads to a new natural transformation from F ◦G′ to F′ ◦G′ making
the following diagram commutes:

X

Y

(F ◦ G′)(X)

(F′ ◦ G′)(X)
(F ◦ G′)(Y)

(F′ ◦ G′)(Y)
f

F ◦ G′

F′ ◦ G′

(τG′)X

(F ◦ G′)(f)

(τG′)Y

(F′ ◦ G′)(f)F ◦ G′

F′ ◦ G′

Let us note here that the functor G′ impacts only on objects. That is to say the composition
is made between the natural transformation τ and the "object function" of G′. For this
reason, we write τG′ instead of τG′ (i.e. τ is indexed by G′).

32 Chapter II Category theory

4 Monads in category theory

Monads are a categorical tool that was first introduced in the 80′s by Moggi in order to de-
velop a categorical semantics of computations for programming languages [16, 15]. Later, in
the 90′s, monads received much attention from the community of functional programming lan-
guages because they have shown their suitability for sequentially combining computations into
more complex computations [33, 14]. They were then used to introduce aspects of imperative
programming languages such as input/output (I/O) operations, state updating, exceptions,
nondeterminism, etc., in functional programming languages. More precisely, they allow the
explicit addition, to functional programming languages, of concepts which they lack such as
side effects. Consequently, monads can then sequentially build severals kinds of computation
effects such as non-determinism, partiality, exception, etc., flexibly.

4.1 Definition

Definition 4.1 (Monad) Let C be a category. A monad in C consists of an endofunctor T : C −→ C

equipped with two natural transformations η : 1 =⇒ T and µ : T ◦ T =⇒ T (with 1 : C −→ C is the
identity functor) which satisfy the conditions µ ◦ Tη = µ ◦ ηT = 1 and µ ◦ Tµ = µ ◦ µT:

T T ◦ T T

T

Tη ηT

µ
1 1

T ◦ T ◦ T T ◦ T

T ◦ T T

Tµ

µT

µ

µ

η is called the unit of the monad. Its components map objects in C to their naturally structured
counterpart. µ is the multiplication of the monad. Its components map objects with two levels
of structure to objects with only one level of structure. The first condition states that a doubly
structured object ηT(X)(x) built by η from a structured object x, is flattened by µ to the same
structured object as a structured object T(ηX)(x) made of structured objects built by η. The
second condition states that when flattening two levels of structure, we get the same result by
flattening the outer structure first (with µT(X)) or the inner structure first (with T(µX)).
In the following, we will often simply write T2 for T ◦ T and T3 for T ◦ T ◦ T.

4.2 A working example

Let us consider a monad built on the powerset functor P : Set → Set. For every set X, the
component ηX : X −→ P(X) of the unit of this monad has to build a set of elements from an
element of X. We can choose ηX : x 7→ {x} that maps every element x ∈ X to the singleton
{x}. On the other hand, for every set X, the component µX : P(P(X)) −→ P(X) of the
multiplication of this monad has to flatten a set of sets of elements of X into a set of elements.
In order to define µ, we need to understand the nature of P2(X). Indeed, P2 is the set of all
subsets not formed by elements of X, but by elements of P(X). There is a set with two levels
of nesting. For instance, x, y and z are elements of X, the sets {x, y}, {z} and {x} are elements
of P(X), and the sets {{x, y}, {z}} and {{x}} are elements of P2(X). The multiplication of the
monad simply consists in transforming a set of subsets of X into a set of X i.e. it flattens all
subsets of X into one set by omitting a nesting level. For instance:

µX({{x, y}, {z}}) = {x, y, z}

4 - Monads in category theory 33

Formally, µ is defined by:

µ : P2(X) → P(X)

U 7→ ⋃
u∈U

(u)

To check that η and µ are natural transformations, it is enough to show that the following dia-
grams commute.

P(P(P(X))) P(P(X))

P(P(X)) P(X)

P(µX)

µP(X)

µX

µX

P(X) P(P(X)) P(X)

P(X)

P(ηX) ηP(X)

µX
1 1

The diagram depicted on the left side can be read as follows: given a set of three levels of paren-
theses, remove the inner parentheses, then the intermediate parentheses (that become inners
after the first operation), or remove the intermediate parentheses, then the inner parentheses
will get the same result. For example, for a set X = {x, y, z, t}, one has:

{{{x, y}, {z}}, {{t}}} {{x, y, z}, {t}}

{{x, y}, {z}, {t}} {x, y, z, t}

PµX

µP(X)
µX

µX

Similarly, the diagram depicted on the right side can be read as follows: given a set of elements
{x0, . . . , xn} of a set X, first return the singleton containing the set {x0, . . . , xn} (i.e. add a paren-
thesis from the outside to {x0, . . . , xn}) and then reduce the obtained singleton {{x0, . . . , xn}}
by µX , or first return the set {{x0}, . . . , {xn}} obtained after applying ηX to every element of
{x0, . . . , xn} and then reduce the obtained result {{x0}, . . . , {xn}} by µX will lead to the same
result which is {x0, . . . , xn}. For example, for a set X = {x, y, z}, one has:

{x, y, z} {{x}, {y}, {z}}

{x, y, z}

P(ηX)

µX
id

{{x, y, z}} {x, y, z}

{x, y, z}

ηP(X)

µX
id

Let us now verify that the above diagrams commute: given that for any morphism f : X −→ Y,
P(f) : P(X) −→ P(Y) is the morphism which maps each part of X to its image by f . We must
check that:

µ ◦ ηP = µ ◦ Pη = 1 (II.4)

34 Chapter II Category theory

µ ◦ µP = µ ◦ Pµ (II.5)

For Equation II.4, we have:

µX ◦ ηP(X) : P(X)
ηP(X)−−−→ P(P(X))

µX−→ P(X)

{x1, . . . , xi . . .} {{x1, . . . , xi . . .}} {x1, . . . , xi . . .}

µX ◦ P(ηX) : P(X)
P(ηX)−−−→ P(P(X))

µX−→ P(X)

{x1, . . . , xi . . .} {{x1}, . . . , {xi}, . . .}} {x1, . . . xi, . . .}

For Equation II.5, we have:

µX ◦ µP(X) : P3(X)
µP(X)−−−→ P2(X)

µX−→ P(X)

{{{x11},...{x1j},...},

{{x21},...{x2j},...},

... ... }

{{x11},...{x1j},...,

{x21},...{x2j}, ...

... ... }

{x1i ,x1j ,...,x2i ,x2j ,...}

µX ◦ P(µX) : P3(X)
P(µX)−−−→ P2(X)

µX−→ P(X)

{{{x11},...{x1j},...},

{{x21},...{x2j},...},

... ... }

{{x11,...x1j ,...}

{x21,...x2j ,...}

... ... }

{x1i ,x1j ,...x2i ,x2j ,...}

The powerset monad is usually used to model non-deterministic state machines by replacing
the target state of a transition by a set of possible target states. Intuitively, the unit η allows us
to add a non-deterministic behaviour to every state as a trivial non-determinism (with only one
possibility to choose). The multiplication µ allows us to obtain the successors of the successor
states of each state, abstracting away internal states:

s010

s01j

s01 s01m

s0 s0i
...

µ(s0)
=⇒

s0n s0n0

s0nk

s0nl

s010

s01j

s01m

s0
...

s0n0

s0nk

s0nl

4.3 More examples

We describe here a few usual monads.

4 - Monads in category theory 35

4.3.1 Partial

The partial monad (or maybe, or also deadlock) is defined by the triplet (id + 1, η, µ) with:

• id + 1 : Set −→ Set is the functor that maps a set X to (id + 1)(X) = X⊥ = X ∪ {⊥} and
that sends a function f : X −→ Y to a function :(id + 1)(f) : X ∪ {⊥} −→ Y ∪ {⊥} given
by:

⊥ 7→ ⊥ and x 7→ f (x)

where 1 is the singleton set whose only element is ⊥.

• For every X, the unit ηX : X −→ X⊥ is the canonical inclusion that maps every element
x ∈ X to itself;

• For every X, the multiplication µX : X⊥ −→ X⊥ is the application defined as follows:

µX : X⊥ → X⊥
⊥ 7→ ⊥
x 7→ x

The monad partial is usually used to model objects that evolve and can be interrupted or
disappear at any time. For example, systems that evolve by moving to successor states, and
for which we cannot guarantee whether their execution will be normally terminated. There is a
deadlock state in which the system runs in unsafe state. Then, the state space X is extended to
X⊥ by adding the special symbol ⊥ to signal explicitly deadlock states.

4.3.2 Ordered nondeterminism

The ordered nondeterminism (or sequence) is defined by the triplet (id∗, η, µ) with:

• id∗ : Set −→ Set is the functor that maps a set X to id∗(X) which is the set of all lists that
can be recursively formed with the elements of X and the usual list operations. As well,
the functor id∗ associates to a function f : X −→ Y a function:

id∗(f) : id∗(X) → id∗(Y)
[x0, . . . , xn] 7→ [f (x0), . . . , f (xn)]

• For every X, the unit is the singleton list constructor. It is an application ηX : X −→ id∗(X)

mapping every element x ∈ X to the list [x];

• For everyX, the multiplication µX : id∗(id∗(X)) −→ id∗(X) is the application that flattens
out a list of lists of elements in list of elements, by removing all inner "square brackets".
For example, it transforms [[x, y, z], [t]] into [x, y, z, t]. Formally, this application is defined
by:

µX : id∗(id∗(X)) → id∗(X)

[[x11, . . . , x1n1], . . . , [xm1, . . . , xmnm]] 7→ [x11, . . . , x1n1 , . . . , xm1, . . . , xmnm]

The ordered nondeterminism monad is usually used in cases where there is a set of possibil-
ities ordered from a certain perspective, and that requires an exhaustive exploration of all these
possibilities. For example, a system that has possible input signals at any given time, and only
one of them has to be taken. Hence, this entails an ordered view of nondeterminism. A pos-
sible choice may be then "all inputs are possible", but their probability decreases (or increases)
depending on their lengths.

36 Chapter II Category theory

4.3.3 Exception

The exception monad is defined by the triplet (id + E, η, µ) with:

• id+ E : Set −→ Set is the functor that maps a set X to (id+ E)(X) = X ∪ E and a function
f : X −→ Y to (id + E)(f) = f + idE;

• For every X, the unit ηX : X −→ X ∪ E is the injective application maping every x ∈ X to
itself;

• For every X, the multiplication µX : (id + E)((id + E)(X)) −→ (id + E)(X) is the applica-
tion defined as follows:

µX : (id + E)((id + E)(X)) → (id + E)(X)

e 7→ e
x 7→ x

The exception monad is usually used to handle exceptions in many programming languages.
Programs may indeed terminate "abruptly" because of an exception. Then, from this point
of view, monads allow us to model computations that either normally succeed, moving to a
successor state from a given state, or fail raising an exception e ∈ E.

Note first that the partial monad can be seen as a particular instance of the exception monad.
It is enough to instantiate E with 1. Second, non-termination (deadlock state) is basically differ-
ent from exceptions. That is: once a computation is blocked, it blocks forever. There is no way to
get out of the deadlock state. However, using a suitable exception handler, normal termination
can be restored when a system "exceptionally" terminates.

4.4 Category of Kleisli

There is an alternative description of monads to represent computations: Kleisli triple. Formally,
Kleisli triples are defined as follows:

Definition 4.2 (Kleisli triple) A Kleisli triple over a category C is a triple (T, η, ∗) where T :
Obj(C) −→ Obj(C) is an object mapping, ηX : X −→ TX is a Obj(C)-indexed mapping in X ∈
Obj(C), and ∗ is an operator that assigns to each function f : X −→ TY a function f ∗ : TX −→ TY
such that:

• η∗X = idTX ;

• f ∗ ◦ ηX = f for f : X −→ TY;

• g∗ ◦ f ∗ = (g∗ ◦ f)∗ for f : X −→ TY and g : Y −→ TZ.

From any Kleisli triple (T, η, ∗) over C, we can define a new category called Kleisli category and
noted KlT(C) [57].

Definition 4.3 (Kleisli category) Given a Kleisli triple (T, η, ∗) over C. The category of Kleisli
KlT(C) is defined as follows:

• The objects of KlT(C) are those of C;

• The morphisms X −→ Y from X to Y in KlT(C) are the morphisms X −→ TY from X to TY in
C;

• For every object X, the identity idX : X −→ X in KlT(C) is the morphism ηX : X −→ TX in C;

4 - Monads in category theory 37

• For every pair of morphisms f : X −→ Y and g : Y −→ Z in KlT(C), the composite of g ◦ f :
X −→ Z in KlT(C) is defined in C as follows:

g ◦ f : X
f−→ TY

Tg−→ TTZ
µ−→ TZ

TTZ

TY TZ

X Y

g

µZ
Tg

f

It is not hard to see that the data of this definition form a category. Indeed, the following
properties are verified:

• Compositionality of arrows: for each pair of arrows f : X −→ Y and g : Y −→ Z in
KlT(C), there is a composite arrow g ◦ f : X −→ Z in KlT(C). This property is ensured by
the operations of the monad T as shown in the last point of the above definition.

• Associativity of the composition: if X
f−→ Y

g−→ Z h−→ D, then (h ◦ g) ◦ f = h ◦ (g ◦ f).
To verify this property, it is enough to consider the following diagram in C, and show that
the two morphisms from X to TD coincide.

T3D

T2Z T2D

TY TZ TD

X Y Z D

Tµ

µµ

f

Tg

T2h

g

Th

g h

Example 4.1 (Rel Category) Consider the Rel category of sets and relations. Its objects are ordinary
sets, and its arrows X −→ Y are binary relations R ⊆ X × Y. The composition of two relations
R1 : X −→ Y and R2 : Y −→ Z is given by:

R2 ◦ R1 = {(x, z) ∈ X× Z | ∃y ∈ Y such that (x, y) ∈ R1 and (y, z) ∈ R2}

The Rel category can be obtained from the Set category as the Kleisli category KlT(C) for the monad
whose functor corresponds to powerset. Then, instantiating the monad T with the powerset monad P ,
the kleisli category KlP (Set) becomes equivalent to the Rel category. Indeed, a relation R ⊆ X×Y can
be seen as a function from X to P(Y). Then, given a function X −→ Y in Set, its corresponding in

38 Chapter II Category theory

KlP (Set) is the relation R f = {(x, y) | y = f (x)}. This lifting from Set to KlP (Set) is therefore done
via the functor Graph : Set −→ KlP (Set) which maps a set X to itself Graph(X) = X, and a function
f : X −→ Y to its graph relation Graph(f) = {(x, y) | y = f (x)} ⊆ X×Y.

E.Manes [59] has shown the equivalence between monads and Kleisli triples. Given a Kleisli triple
(T, η, ∗) the corresponding monad is (T, η, µ) where T is the endofunctor over C that extends
the function T and maps any function f : X −→ Y to (ηY ◦ f)∗, and the multiplication µX acts
as id∗TX for every set X. Conversely, given a monad (T, η, µ), the corresponding Kleisli triple is
(T, η, ∗) where T is the restriction of the endofunctor T to objects, and f ∗ = µY ◦ (T f) for every
function f : X −→ TY.

Chapter III

Coalgebras

1 Coalgebra definition . 40

1.1 Streams . 40

1.2 Mealy Machines . 41

1.3 Labeled Transition Systems (LTS) . 41

1.4 Input-Output Labeled Transition Systems (IOLTS) 42

2 Morphisms . 42

3 Bisimulation . 44

3.1 Stream . 45

3.2 Mealy machines . 45

3.3 Labeled transition systems . 45

4 Final coalgebras . 47

4.1 Streams . 48

4.2 Mealy machines . 50

4.3 Labeled transition systems . 51

4.4 More examples . 53

5 Co-induction . 54

5.1 Proof by bisimulation . 56

Coalgebra theory was first introduced in computer science during the 80′s by Arbib and
Ernest in [60, 61] as an abstract formalism for describing state-based systems such as automata
(in various forms) and transition systems. Later, coalgebra theory emerged, and rapidly became
a powerful tool in different areas of computer science. Indeed, during the 1990′s, a step in the
formalization of concepts of classes and objects in object-oriented programming was achieved
thanks to this theory [7, 8, 62, 63]. Since then, coalgebras have shown that they are suitable
mathematical structures to model and unify state-based dynamic systems. They provide a the-
oretical framework offering an excellent modeling tool whose effectiveness can describe a large
family of state-based systems and prove their properties. In fact, the characteristics of modern
systems viewed not from the point of view of how they are built, but of the results they pro-
duce, are hardly definable (or even simply not definable) by standard formalisms such as first
order or equational logic. From this point of view, the theory of coalgebras can be seen as the
dual of that of algebras. Then, algebras are used to build objects, by constructors, that are con-
sidered different if differently constructed. On the contrary, coalgebras are used to observe (or
decompose) objects, by observers (or destructors), that are considered different when they can
be distinguished by observation. So the difference between the two approaches is intuitively

40 Chapter III Coalgebras

expressed as follows: one shows the construction part of a system, the other shows the obser-
vation part of it. For example, given a set E, in the algebraic approach, finite lists over E can be
inductively constructed using the two operations: nil : 1 −→ E∗ and cons : E× E∗ −→ E∗. The
nil operation generates an empty list from noting and the cons operation adds an element to the
list. However, the infinite lists over E cannot be built in this way. One can only observe their
elements. Hence, an infinite list can be thought of as a black box with a set of internal states S
and two operations obs : S −→ E and next : S −→ S that associate respectively to each state
s ∈ S an observation and its successor state.

1 Coalgebra definition

Coalgebras can be seen as an abstraction of dynamical and reactive systems, behaviours are
well described by transition functions (i.e. automata) of all kinds. A coalgebra consists1 of a
set S of states equipped with a transition function α : S −→ FS where F : Set −→ Set is an
endofunctor on the category of sets, defining the signature of the coalgebra. Hence, α provides
the set of states S with some structures. Unlike algebraic operations that enable us to recursively
build complex objects from basic objects given by signatures, coalgebra operations are a means
to observe system states. More formally, we have:

Definition 1.1 (Coalgebra) Let F : Set −→ Set be a functor called signature functor. A coalgebra
for F, or F-coalgebra is any couple (S, α) where:

• S is a set whose elements are called states;

• α : S −→ FS is a mapping called transition function.

In the following, we give some classical examples of formalism semantics which can be
defined in terms of coalgebras.

1.1 Streams

Streams are used to model continuous input, behaviour of state-based systems, finite or infinite
sequences, etc. They are especially useful in modeling behaviour of dynamical systems. As an
example, consider a deterministic transition system with output [64] S that behaves as follows: in
state s, it either goes into the next state s′ of s, producing an output o as the "observable effect"
of the state transition, or it fails and then, its execution is terminated. Such a system is usually
considered as a black box which can produce outputs, by moving from one state to another.
The behaviour of such a system is called stream automata and consists of a set of internal states
S with two operations acting on the state space S:

obs : S −→ Out and next : S −→ S

The operation obs associates to every state s ∈ S the corresponding output o ∈ Out while the
operation next : S → S maps every state s ∈ S to a successor state s′ ∈ S. We distinguish two
cases:

• If the computation is infinite (the system is running forever), we consider this kind of
systems as coalgebras:

(S, 〈obs, next〉 : S→ A× S)

of the functor F defined by FX = A× X
1Note that we restrict ourselves to the category of sets. Hence, we work with coalgebras for an endofunctor F on the

category of sets and functions.

1 - Coalgebra definition 41

• If the computation is finite (the execution is terminated), we consider this kind of systems
as coalgebras:

(S, 〈obs, next〉 : S→ A× (S ∪ {⊥}))

of the functor F defined by FX = A× (X + 1).

1.2 Mealy Machines

Mealy machines can be seen as stream automata, which also accept environment input. A Mealy
automata is indeed a deterministic automaton with inputs and outputs in which output values
are determined both by the current state and the input values [35, 34, 65]. It is usually defined as
consisting of a set S of states, a set In of input labels, a set Out of output labels, an output function
obs : S× In −→ Out associating an output to every state s depending on its current input, and
finally a transition function next : S× In −→ S mapping every state to its successor state. Note
the typical feature of state-based systems is that one can observe the state space by means of
functions with the state space as domain. In fact, Mealy automata are naturally in coalgebraic
setting because the state space S can be considered as a black box and the functions obs and next
can be combined using the cartesian product as a single function: 〈obs, next〉 : S× In −→ Out×S
which can be also written, using the technique of currying, as a single function with domain S:

〈obs, next〉 : S −→ (Out× S)In

Thus, Mealy automata are coalgebras:

(S, 〈obs, next〉 : S→ (Out× S)In)

of the functor F defined by FX = (Out× X)In.

1.3 Labeled Transition Systems (LTS)

A labeled transition system (LTS) is simply an automaton labeled by actions, and which has no
final state [66, 37]. Formally, it is a tuple (S, A, R) where S is a set of states, A = σ ∪ {τ} is a set
of observable actions Σ and unobservable 2 actions {τ} and R is the transition relation between
states. The relation R can be replaced by a function. Such a binary relation R ⊆ X × Y whose
domain is X and codomain is Y can indeed be commonly seen as a part of the cartesian product
X × Y. The relation R can be then written as a function sending every element of X to a subset
of the powerset P(A×Y) of A×Y. Thus, labeled transition systems are coalgebras:

(S, α : S→ P(A× S))

of the functor F defined by FX = P(A× S).

For technical reasons, another class of labeled transition systems called finitely branching
transition systems has been defined. Every finitely branching transition system is bounded. That
is for all state s ∈ S, the set

{(a, s′) | s a−→ s′} is finite

Such systems can be identified with coalgebras:

(S, α : S −→ Pfin(A× S))

where Pfin is the finite powerset functor.

2τ is called internal action.

42 Chapter III Coalgebras

1.4 Input-Output Labeled Transition Systems (IOLTS)

Many variants of LTS, that make distinction between input and output actions, have been
introduced over the years 1990 in order to respond to technical testing requirements that we
will address later in Chapter VII. For instance, Input-Output Automata (IOA) [38], Input-Output
State Machines (IOSM) [39], Input-Output Transition Systems (IOTS) [28, 46], Input-Output Labeled
Transition Systems (IOLTS) [67]. These models are very similar theoretically. We then consider
modeling coalgebraically the IOLTS model since it is the most widely used for the purpose of
testing. Formally, an IOLTS is a variant of LTS, where the set of observable actions Σ is parti-
tioned into input and output actions i.e. Σ = Σ! ∪ Σ? ∪ {τ}. Classically, in order to distinguish
the input actions from the output actions, input actions (resp. output actions) are marked with
the symbol ? (respectively the symbol !). Similarly to LTSs, IOLTSs are coalgebras

(S, α : S −→ P((Σ? ∪ Σ! ∪ {τ})× S))

of the functor F defined by FX = P((Σ? ∪ Σ! ∪ {τ})× S).

2 Morphisms

The easiest way to describe the relation between the different coalgebras of a given functor is
via morphisms. A morphism from one coalgebra to another is an arrow between their state sets
which preserves coalgebraic structures. If (S, α) and (S′α′) are two coalgebras of a functor F, an
application h : S −→ S′ is a morphism of coalgebras if h transforms the states of S into those
of S′ and if F(h) transforms the transitions of S into those of S′ with respect to the following
constraint: if there is a transition tr between two states of S, then there must be a transition tr′

between the two corresponding states in S′.

Definition 2.1 (Morphisms of coalgebras) Let F : Set −→ Set be a functor. Let (S, α) and (S′, α′)

be two F-coalgebras. A morphism of coalgebras is a function h : S −→ S′ making the following
diagram commute i.e. α′ ◦ h = F(h) ◦ α.

S S′

F(S) F(S′)

h

F(h)

α α′

Now, let us consider a concrete example to better illustrate the notion of a morphism of coalge-
bras. Figure III.1 depicts two label transition systems LTS and LTS′ with the same set A = {a, b}
of labels. As one has already seen in Section 1.3, labeled transition systems are coalgebras of the
functor P(A×) with A as the set of labels. Then, LTS and LTS′ are respectively described as
coalgebras C = (S, α) and C ′ = (S′, α′) as shown in Table III.1.
The initial states of LTS and LTS are respectively s0 and s′0 that are drawn as circles with a thick
border.

A morphism from LTS to LTS′ is then a mapping h : S −→ S′ such that the above diagram
commutes i.e. F(h) ◦ α = α′ ◦ h where F(h) : P(A × S) −→ P(A × S′) is defined for each
U ⊆ A× S by:

F(h)(U) = {(a, h(s)) ∈ A× S′ | (a, s) ∈ U}

2 - Morphisms 43

s0

s1 s2

a a

b
b

s′0

s′1

a

b

Figure III.1 – Graphical representation of LTS and LTS′

`````````````̀Characteristics
Model

LTS LTS’

Set of labels A = {a, b} A = {a, b}

State space S = {s0, s1, s2} S′ = {s′0, s′1}

Transitions Function α : S −→ P({a, b} × S) α′ : S′ −→ P({a, b} × S′)

s0 7→ {(a, s1), (a, s2)} s′0 7→ {(a, s′1)}
s1 7→ {(b, s2)} s′1 7→ {(b, s′1)}
s2 7→ {(b, s2)}

Table III.1 – LTS and LTS′

In our example, h is the mapping depicted with dotted line in Figure III.1. It is defined as
follows:

h(s0) = s′0 and h(s1) = h(s2) = s′1

In order to prove that h is a morphism from LTS to LTS′, it is enough to verify that the following
diagram is commutative:

{s0, s1, s2} {s′0, s′1}

P({a, b} × {s0, s1, s2}) P({a, b} × {s′0, s′1})

h

P(idA × h)

α α′

Hence, we must check that for each state s ∈ S, one has (α′ ◦ h)(s) = (P(idA × h) ◦ α)(s).



44 Chapter III Coalgebras

(α′ ◦ h)(s0) = α′(h(s0))

= α′(s′0)
= {(a, s′1)}
= P(idA × h)({(a, s1), (a, s2)})
= P(idA × h)(α(s0))

= (P(idA × h) ◦ α)(s0)

(α′ ◦ h)(s1) = α′(h(s1))

= α′(s′1)
= {(b, s′1)}
= P(idA × h)({(b, s2)})
= P(idA × h)(α(s1))

= (P(idA × h) ◦ α)(s1)

(α′ ◦ h)(s2) = α′(h(s2))

= α′(s′1)
= {(b, s′1)}
= P(idA × h)({(b, s2)})
= P(idA × h)(α(s2))

= (P(idA × h) ◦ α)(s2)

Let us note that F-coalgebras with morphisms between them constitute a category, which noted
CoAlg(F). Indeed, there is a forgetful functor CoAlg(F) −→ Set mapping a F-coalgebra (S, α)

to its state space S, and a F-morphism coalgebra h to itself.

3 Bisimulation

The notion of bisimulation was first introduced by Milner for the calculus of communicating
systems (CSS) language [36, 68], and it is usually defined as follows: a bisimulation between
two labeled transition systems (S, A, T) and (S′, A, T′) is a relation R ⊆ S × S′ such that for
every pair of states (s, s′) ∈ R, the two conditions are satisfied:

• For each transition (s, a, q) ∈ T, there is a state q′ ∈ S′ such that (s′, a, q′) ∈ T′ and
(q, q′) ∈ R, and

• Symmetrically, for each transition (s′, a, q′) ∈ T′, there is a state q ∈ S such that (s, a, q) ∈ T
and (q, q′) ∈ R.

Given two states s ∈ S and s′ ∈ S′, s is bisimilar to s′, written s ∼ s′, if there is a bisimulation R
such that (s, s′) is in R.

This notion of bisimulation was redefined in terms of coalgebras as follows: Given a functor
F and two F-coalgebras (S, α) and (S′, α′). A relation R ⊆ S× S′ is a bisimulation between S
and S′ if there exists a coalgebra (R, γ : R −→ F(R)) such that the projections π1 : R −→ S and
π2 : R −→ S′ are morphisms of F-coalgebras.

S R S′

F(S) F(R) F(S′)

π1 π2

F(π1) F(π2)

α γ α′

We detail in the following some examples of bisimulation.



3 - Bisimulation 45

3.1 Stream

A bisimulation R ⊆ S × S′ between two automata streams (S, 〈obs, next〉 : S −→ A × S) and
(S′, 〈obs′, next′〉 : S′ −→ A× S′) is a coalgebra (R, γ : R −→ (A× R)) such that the function γ

has to satisfy the following propriety: for all pair of states (s, s′) ∈ S× S′, we have:

γ((s, s′)) = (a, (next(s), next(s′))) such that

 obs(s) = obs(s′) = a

(next(s), next(s′)) ∈ R

In order to verify that R is a stream bisimulation between S and S′, we have to prove that
the projection π1 (respectively π2) is a morphism of coalgebras from (R, γ) to (S, 〈obs, next〉)
(respectively from (R, γ) to (S′, 〈obs′, next′〉)). Hence, we must check:

〈obs, next〉 ◦ π1 = F(π1) ◦ γ (III.1)

〈obs′, next′〉 ◦ π2 = F(π2) ◦ γ (III.2)

For Equation III.1, for each pair of states (s, s′) ∈ R, one has:

(〈obs, next〉 ◦ π1)((s, s′)) = 〈obs, next〉(π1((s, s′)))
= 〈obs, next〉(s)
= (obs(s), next(s))

(F(π1) ◦ γ)((s, s′)) = (F(π1)(γ((s, s′)))
= F(π1)(obs(s), (next(s), next′(s′)))
= (obs(s), next(s))

Similarly we obtain Equation III.2.

3.2 Mealy machines

A bisimulation between two Mealy automata:

(S, 〈obs, next〉 : S −→ (Out× S)In) and (S′, 〈obs′, next′〉 : S′ −→ (Out× S′)In)

is a coalgebra (R, γ : R −→ (Out× R)In) such that its transition function γ is defined for each
pair of states (s, s′) ∈ R and for each input i ∈ In by:

γ((s, s′), i) = (o, (next(s)(i), next′(s′)(i)))

where o = obs(s)(i) = obs′(s′)(i) and (next(s)(i), next′(s′)(i)) ∈ R.

3.3 Labeled transition systems

Two labeled transition systems are bisimilar if their labeling is equivalent, and their behaviour
cannot be distinguished. A bisimulation R ⊆ S × S′ between two labeled transition systems
(S, α) and (S′, α′) over P(A× ) where A is the set of labels, is a coalgebra

(R, γ : R −→ P(A× R))

where γ is the function defined for each pair of states (s, s′) ∈ R by:

γ((s, s′)) = {(a, (q, q′)) | (a, q) ∈ α(s), (a, q′) ∈ α′(s′) and (q, q′) ∈ R}



46 Chapter III Coalgebras

Let us illustrate this definition by a concrete example. Consider again the two labeled transition
systems LTS and LTS′ depicted in Figure III.1. In order to prove that LTS and LTS′ are bisimilar
we first have to choose an appropriate relation R and then to check that it is indeed a bisimula-
tion. Let us take the coalgebra (R, γ) with R = {(s0, s′0), (s1, s′1), (s2, s′1)} is a relation between S
and S′ and γ : R −→ P(A× R) is a function defined as follows:

γ((s0, s′0)) = {(a, (s1, s′1)), (a, (s2, s′1))} and γ((s1, s′1)) = γ((s2, s′1)) = {(a, (s2, s′1))}

and let us verify that the following diagram commutes:

{s0, s1, s2} {(s0, s′0), (s1, s′1), (s2, s′1)} {s′0, s′1}

P(A× S) P(A× R) P(A× S′)

π1 π2

P(A× π1) P(A× π2)

α γ α′

That is to say, for each pair of states (s, s′) ∈ R, one has:

(α ◦ π1)(s, s′) = (P(A× π1) ◦ γ)(s, s′) (III.3)

(α′ ◦ π2)(s, s′) = (P(A× π2) ◦ γ)(s, s′) (III.4)

For Equation III.3, for (s0, s′0) one has:

(α ◦ π1)(s0, s′0) = α(π1((s0, s′0)))
= α(s0)

= {(a, s1), (a, s2)}

(P(A× π1) ◦ γ)(s0, s′0) = (P(A× π1)(γ((s0, s′0)))
= P(A× π1)({(a, (s1, s′1)), (a, (s2, s′1))}
= {(a, s1), (a, s2)}

For (s1, s′1) one has:

(α ◦ π1)(s1, s′1) = α(π1((s1, s′1)))
= α(s1)

= {(b, s2)}

(P(A× π1) ◦ γ)(s1, s′1) = (P(A× π1)(γ((s1, s′1)))
= P(A× π1)({(b, (s2, s′1))}
= {(b, s2)}

For (s2, s′1) one has:

(α ◦ π1)(s2, s′1) = α(π1((s2, s′1)))
= α(s2)

= {(b, s2)}

(P(A× π1) ◦ γ)(s2, s′1) = (P(A× π1)(γ((s2, s′1)))
= P(A× π1)({(b, (s2, s′1))}
= {(b, s2)}

Similarly we obtain Equation III.4.



4 - Final coalgebras 47

4 Final coalgebras

In this section, we represent final coalgebras which play a central role in the theory of coalge-
bras. They provide in fact an abstract model of all possible behaviours of a system.

Definition 4.1 (Final coalgebra) Let F be a functor. A final F-coalgebra (Γ, π) is a F-coalgebra such
that for every F-coalgebra (S, α), there is a unique3 coalgebra morphism beh : (S, α) −→ (Γ, π) such
that the following diagram commutes:

S Γ

F(S) F(Γ)

beh

F(beh)

α π

A final coalgebra, when it exits, contains every possible observable behaviour. It can be seen
as the maximal representation containing all possible observations of a system. Once the final
coalgebra for a functor F is defined, we can associate to any state s of an arbitrary F-coalgebra
its behaviour beh(s), that is a state of the final coalgebra which is bisimilar with it.

Theorm 4.1 (Gumm [56]) Let F be a signature functor. If F admits a final coalgebra (Γ, π), then for
every F-coalgebra (S, α), and for every state s ∈ S, there is a unique state u = beh(s) ∈ Γ such that u
and s are bisimilar.

Moreover, it has been shown that states of the final coalgebra coincide with behaviours. Then,
for any functor F, bisimilarity implies behavioural equivalence. We have the fundamental re-
sult:

Theorm 4.2 (Rutten and Turi [69]) Let F be a functor. Let (S, α) be an arbitrary F-coalgebra, let (Γ, π)

be the final F-coalgebra and let beh : S −→ Γ be the unique morphism from S to Γ. Then, for each pair
of states s, s′ ∈ S, one has:

s ∼S s′ =⇒ beh(s) = beh(s′)

This result then states that to show equality between two states, it is enough to show that they
are mapped to the same state in the final coalgebra.

In most cases, the unique existence of a final coalgebra (Γ, π) for a functor F is what one
needs to know. We focus precisely on the uniqueness of the morphism beh which maps a state
of an arbitrary F-coalgebra to its behaviour in Γ, rather than on the internal structure of the
space state Γ or the form of the transition function π. Hence, we are often interested in defining
final coalgebras without building their elements, ensuring their uniqueness up to isomorphism.

Theorm 4.3 (Lambek [70]) Let F be a functor. If F admits a final coalgebra π : Γ −→ F(Γ), then it is
necessary an isomorphism π : Γ

∼=−→ F(Γ).

One class of functors for which a final coalgebra always exists is the class of finite Kripke
polynomial functors. As already mentioned, finite Kripke polynomial functors are endofunc-
tors of the category Set which include the identity functor, the constant functors, and are closed
by product, coproduct, exponent, and finite powerset.

3The dotted notation is used to express the uniqueness of the morphism.



48 Chapter III Coalgebras

Theorm 4.4 Each finite Kripke polynomial functor Set −→ Set has a final coalgebra.

In the following, we describe some concrete examples of final coalgebras to become more
familiar with them. We refer to [71, 72, 73] for results on the existence and construction of final
coalgebras.

4.1 Streams

In this subsection, we describe the final coalgebra for stream automata. Assume we have a state
s ∈ S of such a stream automata (S, 〈obs, next〉 : S −→ A× S). Apply 〈obs, next〉 on s yields an
output obs(s) ∈ A as well as its successor state s′ ∈ S. In the same manner, 〈obs, next〉 can be
again applied on s′, and then produce a new couple (obs(s′), next(s′)) ∈ A× S. Hence, in this
way, we can get for each state s ∈ S, an infinite sequence of outputs:

(obs(s), obs(next(s)), obs(next(next(obs(s)))), . . . )

This sequence is formally obtained by the following definition:

Definition 4.2 (Observable behaviour of streams)
Let FX = A× X be a functor. Let C = (S, 〈obsC , nextC〉) be a F-coalgebra, let s be a state in S and let
n ∈N. The observable behaviour of s is defined by:

(beh(s))(n) = obsC(nextn
C(s))

where nextn is inductively defined via: next0
C(s) = s

nextn+1
C (s) = nextC(nextn

C(s))

The set of states Γ of the final coalgebra is then the set AN = { f : N→ A} = {(ai)i∈N | ai ∈ A}
of all infinite sequences (ai)i∈N over A, and its transition function π is the cartesian product of
the two following functions:

〈head, tail〉 : AN → A× AN

(a0, a1, a2, . . . ) 7→ (a0, (a1, a2, . . . ))

which are defined for any function f : N −→ A as follows:

head( f ) = f (0) and tail( f ) = f ′ such that ∀n ∈N, f ′(n) = f (n + 1)

Thus, everything we can possibly observe about a state s ∈ S is obtained via the function
beh : S −→ AN. It assigns to a state s ∈ S, the sequence of outputs beh(s) ∈ AN which is
generated on the unique path starting from s.

In order to prove that (AN, 〈head, tail〉 : AN −→ A× AN) is indeed a final coalgebra of the func-
tor FX = A× X, it suffices to show that the function beh : S −→ AN is the unique morphism
making the following diagram commute.

S AN

A× S A× AN

beh

idA × beh

〈obs, next〉 〈head, tail〉

In fact, it leads to two points:



4 - Final coalgebras 49

1. verify that beh is a morphism of coalgebras from S to AN;

2. verify that beh is the unique morphism from S to AN.

For the first point, we need to prove that for any s ∈ S, one has:

(head ◦ beh)(s) = (idA ◦ obs)(s) and (tail ◦ beh)(s) = (beh ◦ next)(s)

(head ◦ beh)(s) = head(beh(s))
= head((obs(s), obs(next(s)), obs(next(next(s))), . . . ))
= obs(s)
= idA(obs(s))
= (idA ◦ obs)(s)

(tail ◦ beh)(s) = tail(beh(s))
= tail((obs(s), obs(next(s)), obs(next(next(s))), . . . )
= (obs(next(s)), obs(next(next(s))), . . . )
= beh(next(s))
= (beh ◦ next)(s)

We still have to show the second point. Let us assume that f : S −→ AN is also a morphism of
coalgebras which satisfies (head ◦ f = idA ◦ obs) and (tail ◦ f = f ◦ next), and then prove that
for any s ∈ S, one has beh(s) = f (s).
First of all, we need to define an auxiliary function tailn : AN −→ AN that takes a sequence
σ ∈ AN and returns the sequence σ′ ∈ AN containing all the elements after the index n in σ.
More formally, it is defined for any σ = (ai)i∈N ∈ AN and for any n ∈N by:

tailn(σ) = (ai+n)i∈N

Proposition 4.1 For every morphism f : S −→ AN and for any n ∈N, one has:

( f (s))(n) = obs(nextn(s)) (III.5)

Proof Let us assume f (s) = (a0, a1, a2, . . . , an, . . . ). On one hand, we have:

head(tailn( f (s))) = head((an, an+1, . . . )) = an = ( f (s))(n) (III.6)

On the other hand, since f is a morphism, we have tail ◦ f = f ◦ next which implies tailn ◦ f = f ◦ nextn.
Then, we have:

head(tailn( f (s))) = head( f (nextn(s))
= (idA ◦ obs)(nextn(s))
= obs(nextn(s))

(III.7)

Consequently, Equation III.5 is obtained as an equality between Equation III.6 and Equation III.7.
End

We have just proved that for any n ∈N, ( f (s))(n) = obs(nextn(s)). We have therefore beh(s) =
f (s). Thus, beh is the unique morphism of coalgebras from S to AN.



50 Chapter III Coalgebras

4.2 Mealy machines

Given a Mealy machine (S, 〈obs, next〉 : S × In −→ (Out× S)). Its observable behaviour (i.e.
a representation in which only inputs and outputs of the machine are involved) is obtained as
follows: assume we have a state s ∈ S and an input i ∈ In. Apply 〈obs, next〉 to s produces an
output obs((s, i)) ∈ Out and leads the machine state to its successor state next((s, i)) ∈ S. In the
same way, we can re-apply 〈obs, next〉 on next(s) for a new input i′ ∈ In, and then produces an
output obs((next(((s, i)), i′)) ∈ Out and the successor state next((next(((s, i)), i′))). Continuing
in this way4, for each finite sequence of inputs (i0, i1, . . . , in), we can get a finite sequence of
outputs (o0, o1, . . . , on). Thus, everything we can observe about a state s ∈ S after receiving a
finite sequence of inputs σ ∈ In+ is obtained via the function beh(s) : In+ −→ Out+ which
assigns to any finite non-empty sequence of inputs (i0, i1, . . . , in) ∈ In+, the finite non-empty
sequence of outputs (o0, o1, . . . , on) ∈ Out+.

Definition 4.3 (Observable behaviour of Mealy machines) Let FX = (Out× X)In be a functor.
Let C = (S, 〈obsC , nextC〉) be a F-coalgebra, let s be a state in S and let (i0, i1, . . . , in) ∈ In+. The
observable behaviour of s after receiving (i0, i1, . . . , in) is defined by:

beh(s) = (obsC(next∗C(s)(i0)), obsC(next∗C(s)((i0, i1))), . . . , obsC(next∗C(s)((i0, i1, . . . , in)))

where the function next∗ is inductively defined via: next∗C(s)(i) = nextC(s)(i)

next∗C(s)((i0, i1, . . . , in)) = next∗C(nextC(s)(i0))((i1, i2, . . . , in))

The set of states Γ of the final coalgebra is then the set

{φ | φ ∈ (Out+)In+} = {φ | φ : In+ −→ Out+}

and its transition function π is:

π : Γ× In → (Out× Γ)
(φ, i) 7→ 〈φ(i), φ′〉

where φ′ : In+ −→ Out+ is defined for each σ ∈ In+ by:

φ′(σ)(n) = φ(σ)(n + 1), ∀n ∈N

Hence, the function π splits the elements of Γ into couples in (Out× Γ) as follows: let φ ∈ Γ
and i ∈ In:

• φ(i) is the output associated to the current state;

• φ′ : In+ −→ Out+ is the function which associates to every input sequence (i1, . . . , in) ∈
In+ the same sequence of outputs (o1, o2, . . . , on) that is obtained by the function φ when
the input sequence (i0, i1, i2, . . . , in) is applied to it.

φ φ′ φ′′ . . .
i0|o0 i1|o1

Rutten proposed in [42, 74] another way to define the final coalgebra of Mealy automata
using transfer functions. He showed that the set of all causal stream functions Γ = {F : Inω −→
Outω | F is causal} carries itself the structure of a Mealy coalgebra via the notions of initial
output and stream function derivative.

4In+ denotes the set of finite non-empty sequences over In.



4 - Final coalgebras 51

Definition 4.4 (Derivative function) Let F : Inω −→ Outω be a transfer function. We define:

1. the initial output on input i ∈ In by F [i] = F (i.σ)(0) and

2. the derivative function on input i ∈ In by Fi : Inω −→ Outω with Fi(σ) = F (i.σ)′

for any σ ∈ Inω chosen arbitrarily.

Let us now define the coalgebra (Γ, π) as follows:

• Γ = {F : Inω −→ Outω | F is causal};

• π : Γ× In −→ (Out× Γ) is the transition function defined for every F ∈ Γ and for every
i ∈ In by:

π(F )(i) = 〈F [i],Fi〉

Theorm 4.5 The Mealy machine (Γ, π) defined above is a final Mealy machine coalgebra: for every
Mealy machine (S, α) there is a unique homomorphism !α : S −→ Γ from (S, α) to (Γ, π).

Proof For every Mealy machine coalgebra (S, α), let us define !α : S −→ Γ which for every state s ∈ S,
associates the transfer function !α(s) : Inω −→ Outω which is defined for every s ∈ S, every σ ∈ Inω

and every k ∈ ω as follows:

!α(s)(σ(k)) = ok such that s0
σ(0)|o0

s1
σ(1)|o1

. . .
σ(k)|ok

sk+1

where there exists an infinite sequence of states s0, . . . , sk, sk+1 ∈ S and s0 = s.
It is not difficult to check that !α is causal, and that !α defined in this way is the unique homomorphism
making the diagram below commute.

S Γ

(Out× S)In (Out× Γ)In

!α

(idOut×!α)idIn

α π

End

4.3 Labeled transition systems

Consider again the finitely branching labeled transition systems that we previously described
as coalgebras (S, α : S −→ Pfin(A× S)) of the functor FX = Pfin(A× X) with A as an alphabet
of actions. By Theorem 4.3, the powerset functor P does not admit a final coalgebra. This is
indeed due to Cantor’s theorem [75, 76] that states that, for any set X, its powerset P(X) has a
strictly greater cardinality than X itself. That means there is no bijection between X and P(X)

(there is in fact no injection from P(X) to X). However, by Theorem 4.4, the finite powerset Pfin

belonging to the class of polynomial functors, admits a final coalgebra.
In the following, we then describe the final coalgebra (Γ, π) of finitely branching labeled

transition systems. The state set Γ that we will note STA
∼ is the equivalence classes of so-called

synchronization trees over A, modulo bisimilarity. We can in fact look at the synchronization



52 Chapter III Coalgebras

trees [36] as transition systems without circuits whose states (or nodes) are represented implic-
itly and transitions (or arcs) carry labels of A. Intuitively, a synchronization tree is a represen-
tation that captures at once all possible behaviours of a system. It can be obtained by unfolding
the system starting from its initial state. The right part of Figure III.2 shows a labeled transition
system, while the left part shows its unfolding starting from the initial state s0 as a synchroniza-
tion tree.

s0

s1 s2

a0

a2

a1

a3

a0 a1

a3 a2

a3 a2 a0 a1

Figure III.2 – Example of a synchronization tree

Let us note some points:

• Synchronization trees have finite branches and eventually infinite paths. Many nodes
(potentially infinitely many) of the synchronization tree represent the same state of the
original labeled transition system: they correspond in fact to different visits to the state;

• Nodes of synchronization trees are represented implicitly (they are not labeled). Informa-
tion on nodes is not present in the behaviour;

• Two states which are bisimilar in the labeled transition systems are mapped to the same
synchronization tree in TSA

∼ because TSA
∼’s elements are equivalence classes modulo bisim-

ilarity ∼.

The transition function π : TSA
∼ −→ Pfin(A× TSA

∼) is the application splitting the synchroniza-
tion tree into its immediate subtrees as follows:

TSA
∼ −→ Pfin(A× TSA

∼)
t1 tn

a1 an

. . .


∼

7→ {(a1, [t1]∼), . . . , (an, [tn]∼)}

Now, to prove that (TSA
∼, π) is the final coalgebra, we need to verify the commutativity of the

following diagram:



4 - Final coalgebras 53

S TSA
∼

Pfin(A× S) Pfin(A× TSA
∼)

beh

Pfin(idA × beh)

α π

with beh is the function that associates to every state s ∈ S, the corresponding synchronization
tree beh(s) ∈ TSA

∼ as follows:

s

s1 sn. . .

a1 an
=⇒ beh(s) =


beh(s1) beh(sn )

a1 an

. . .


∼

It is straightforward to verify the commutativity of the above diagram.

4.4 More examples

We present here more examples of systems modeling in terms of coalgebras. For each system,
we give the corresponding functor as well as its final model without going into technical de-
tails.5

1. Finite stream over a set of labels A: is a coalgebra (S, α : S −→ (A × S) ∪ {⊥}) of the
functor FX = (A × X) + 1 where ⊥ is a state expressing the possibility of termination.
The final coalgebra is (A∞, π : A∞ −→ (A× A∞) ∪ {⊥}) where π is the function defined
for σ ∈ A∞ by:

π(σ) =

 ⊥ if σ = ε

(a, σ′) if σ = a.σ′

2. Binary tree over a set of labels A: is a coalgebra (S, α : S −→ ((A× S)× (A× S))∪ {⊥})
of the functor FX = ((A× X)× (A× X)) + 1. The final coalgebra is (Γ, π) where:

•
Γ = {φ : {0, 1}∗ → (A× A) ∪ {⊥} |

∀v ∈ {0, 1}∗, φ(v) ∈ {⊥} =⇒ (∀w ∈ {0, 1}∗, φ(v.w) = φ(v))}

is the set of all binary trees whose arcs are labeled with actions of A and whose
branches are eventually infinites

• π : Γ −→ ((A× Γ)× (A× Γ)) ∪ {⊥} is the function defined for any tree φ ∈ Γ by:

π(φ) =

 ⊥ if φ(ε) = ⊥

(〈a1, φ1〉, 〈a2, φ2〉) if φ(ε) = 〈a1, a2〉

with for i = 1, 2, φi is defined for v ∈ {0, 1}∗ by φi(v) = φ(ai.v).

5 A∞ = A∗ ∪ AN is the set of finite and infinite sequences of elements over A, ε denotes the empty sequence and
_._ : A∞ × A∞ −→ A∞) is the binary operation of concatenation.



54 Chapter III Coalgebras

3. Deterministic automata: is a coalgebra (S, α : S −→ {0, 1} × SA) of the functor FX =

{0, 1} × XA. The final coalgebra is (L, 〈oL, dL〉) where L = {L|L ⊆ A∗} is the set all
languages over the alphabet A, and 〈oL, dL〉 is the cartesian product of oL and dL that are
defined for a ∈ A and L ∈ L by:

oL(L) =

 1 if ε ∈ L

0 otherwise
and dL(L)(a) = {v ∈ A∗ | a.v ∈ L}

4. Moore automata: is the coalgebra (S, α : S −→ Out× SIn) of the functor

FX = Out× XIn

The final coalgebra is (OutIn∗ , 〈head, tail〉 : OutIn∗ −→ Out× OutIn∗) where 〈head, tail〉 is
the function defined for φ : In∗ −→ Out ∈ OutIn∗ by:

〈head, tail〉(φ) = 〈φ(ε), φ′〉

with φ′ is the function defined for i ∈ In and σ ∈ In∗ by:

φ′(i)(v) = φ(i.σ)

5 Co-induction

Due to the fact that coalgebras are duals of algebras, definitions and results known from uni-
versal algebra were dualized to the coalgebra theory such as coinduction principle which we
present in this section. The coinduction principle is the categorical dual of induction which,
in a categorical setting, refers to the use of the initiality principle for algebras. In fact, induc-
tion is used to build new data entities from data entities already constructed. On the contrary,
coinduction is used to observe potentially infinite data entities whose structure may contain
patterns that repeat infinitely. It does not tell us how to build objects, it tells us only what we
can observe on them. As mentioned in the previous section, once we know the final coalge-
bra (Γ, π) of a given functor F, we can use its finality to define functions into its carrier set Γ
and to prove properties. Hence, existence of final coalgebra allows us to define functions (it is
called coinduction definition principle) while its uniqueness allows us to prove properties of the
functions already constructed (it is called coinduction proof principle).

Example 5.1 (Definition of functions by coinduction) In this example, we define by coinduction,
the function merge : AN × AN −→ AN which builds a new sequence by interleaving the elements
of two sequences. For this, it is enough to verify that the function merge is a morphism of coalgebras
from an appropriate coalgebra with the same domain of merge i.e. AN × AN to the final coalgebra
(AN, 〈head, tail〉 : AN −→ A × AN) of the functor FX = A × X. Let us take a coalgebra whose
carrier set is AN× AN and whose transition function is αm : AN× AN −→ A× (AN× AN) defined
by:

∀(σ1, σ2) ∈ AN × AN, αm((σ1, σ2)) = (head(σ1), (σ2, tail(σ1)))

Now, by the conduction definition principle, we can directly conclude the existence of the morphism



5 - Co-induction 55

merge : AN × AN −→ AN which makes the following diagram commute:

AN × AN AN

A× (AN × AN) A× AN

merge

idA ×merge

αm 〈head, tail〉

The fact that this diagram is commutative gives indeed:

head(merge((σ1, σ2)) = head(σ1) and tail(merge((σ1, σ2))) = (merge((σ2, tail(σ1))) (III.8)

as expected.

Example 5.2 (Proof by coinduction) Let us consider a property of the function merge that is:

for any sequence σ ∈ AN, merge((odd(σ), even(σ))) = σ

and then prove it by conduction. For this, we first coinductively define two functions: odd : AN −→ AN

and even : AN −→ AN. The first one, maps each sequence σ ∈ AN to a new sequence odd(σ)
containing only elements of σ at odd positions and the second one maps each sequence to a new sequence
even(σ) containing only elements of σ at even positions. Similarly to merge, we define two coalgebras

O = (AN, αO : AN −→ A× AN) and E = (AN, αE : AN −→ A× AN)

of the functor FX = A× X where αO and αE are defined respectively for any sequence σ ∈ AN by:6

αO(σ) = (head(tail(σ)), tail3(σ)) and αE (σ) = (head(σ), tail2(σ)))

AN AN AN AN

A× AN A× AN A× AN A× AN

odd

idA × odd

αO 〈head, tail〉

even

idA × even

αE 〈head, tail〉

Then, the commutativity of the above diagrams gives the two following equations: for any sequence
σ ∈ AN:

head(even(σ)) = head(σ) and tail(even(σ)) = even(tail(tail(σ))) (III.9)

head(odd(σ)) = head(tail(σ)) and tail(odd(σ)) = odd(tail(tail(tail(σ)))) (III.10)

We can also easily prove that:

odd(σ)) = even(tail(σ)) and even(tail2(σ)) = odd(tail(σ)) (III.11)

Now, we need to show that the composite function

merge ◦ 〈even, odd〉 : AN −→ AN

6The function tailn : AN −→ AN has been defined in the previous section for σ = (ai)i∈N ∈ AN and n ∈ N by
tailn(σ) = (ai+n)i∈N



56 Chapter III Coalgebras

and the identity function on AN are equal. It suffices then to prove that they are both morphisms for the
same coalgebra structure on AN. It is not difficult to see that the identity function idAN : AN → AN is
indeed a morphism of coalgebras from (AN, 〈head, tail〉) to (AN, 〈head, tail〉). We still have to show that
merge ◦ 〈even, odd〉 is also a morphism from AN to AN. For this, it is enough to show the commutativity
of the following diagram:

AN AN × AN AN

A× AN A× (AN × AN) A× AN

〈even, odd〉

idA × 〈even, odd〉

〈head, tail〉 αm

merge

idA ×merge

〈head, tail〉

idAN

This amounts to show that:

〈head, tail〉 ◦ (merge ◦ 〈even, odd〉) = (idA × (merge ◦ 〈even, odd〉)) ◦ 〈head, tail〉

This is proved for σ ∈ AN by:

head(merge(even(σ), odd(σ)))=head(even(σ)) see Equation III.8
=head(σ) see Equation III.9

tail(merge(even(σ), odd(σ))) =merge(odd(σ), tail(even(σ))) see Equation III.8
=merge(odd(σ), even(tail(tail(σ)))) see Equation III.9
=merge(even(tail(σ)), odd(tail(σ))) see Equation III.11
=merge(〈even, odd〉(tail(σ)))
=merge ◦ 〈even, odd〉)(tail(σ))

5.1 Proof by bisimulation

There is another alternative for proving properties. The underlying idea is that two states are
behaviourally equivalent if and only if they are bisimilar (see Theorem 4.2). This result indeed
gives rise to a proof method. Then, two states are equals if and only if they are contained in a
bisimulation relation.

Corollary 5.1 Two states s and s′ have the same behaviour if and only if there is a bisimulation R
such as (s, s′) ∈ R. For every bisimulation R on the final7 coalgebra (Γ, π), one has R ⊆ ∆Γ where
∆Γ = {(s, s) | s ∈ Γ}. Equivalently, for all s and s′ in Γ, one has:

s ∼ s′ ⇐⇒ s = s′

Example 5.3 (Proof by bisimulation) Let us consider again the property:

∀σ ∈ AN, merge((odd(σ), even(σ))) = σ

proved in Example 5.2, and then prove it using the notion of bisimulation.
7Recall s and s′ define behaviours belonging to the final coalgebra.



5 - Co-induction 57

Our aim is to prove the equality:

merge(odd(σ), even(σ)) = σ

Then, we need a bisimulation R ⊆ AN × AN containing both sides of the equation. We take:

R = {(merge(odd(σ), even(σ)), σ) | σ ∈ AN}

Recall from Section 3 that a relation R ⊆ AN × AN is a bisimulation if the two projections π1 : R −→
AN and π2 : R −→ AN are morphisms of coalgebras from the coalgebra (R, γ) to (AN, 〈head, tail〉)
where γ is defined as follows:

γ : R −→ A× R
(σ1, σ2) 7→ (head(σ1), (tail(σ1), tail(σ2)))

By finality of AN, it is obvious to show that π1 and π2 are morphisms of coalgebras from

({(merge((odd(σ), even(σ))), σ)|σ ∈ AN}, γ) to (AN, 〈head, tail〉)

Then, one has merge((odd(σ), even(σ))) = σ.

Example 5.4 Let aN and bN be two concrete infinite streams and let us show that merge(aN, bN) =

(ab)N. For this, we first define a relation R ⊆ AN × AN containing the following pairs:

(merge(aN, bN), (ab)N) and (merge(bN, aN), (ba)N)

R is a bisimulation if for any pair of streams (σ1, σ2) ∈ R, one has:

R((σ1, σ2)) =⇒

 head(σ1) = head(σ2)

tail(σ1) = tail(σ2)

Consider the first pair (merge(aN, bN), (ab)N) of R, the only transition step of its left component is:

merge(aN, bN)
a−→ merge(bN, aN)

whereas its right component can take the step:

(ab)N a−→ (ba)N

Hence, the resulting pair (merge(bN, aN), (ba)N) is again in the relation R.
In the same manner, we can show that the resulting pair of the second pair (merge(bN, aN), (ba)N) is
(merge(aN, bN), (ab)N) which is in the relation R.
Consequently, R is a bisimulation. Corollary 5.1 tells us that R ⊆ ∆AN , proving then the equality:

merge(aN, bN) = (ab)N



58 Chapter III Coalgebras



Part II

Systems modeling framework





61

This part provides the first contribution of this thesis. It presents a formal abstract frame-
work for developing, in a compositional way, complex software systems viewed as component-
based systems. It intends to contribute to the following topics:

• The definition of a generic modeling of components. This will then enable us to unify
a wide family of state-based formalisms classically used to specify components, such as
Mealy machines [34, 35], labeled transition systems (LTS) [36] and input-output labeled
transition systems (IOLTS) [40, 41]. We will see that the generality of our formalization
will be obtained by taking into account various kinds of computation structures such as
non-determinism, partiality, etc. [16].

• The definition of a trace model over components using causal transfer functions [42, 74,
77] as is usual in control theory or physics when dealing with dynamic system modeling.

• The definition of a minimal and unified set of component integration operators able to
take into account the interaction semantics present in most modern systems. Such inte-
gration operators will be used to combine component behaviours that interact together in
order to build a larger system.

This part consists of two chapters. The first chapter introduces a generic unified coalge-
braic model of components enabling us to naturally describe a large family of state-based for-
malisms as well as its trace model given as transfer functions. The second chapter introduces
how components can be composed to obtain systems. It presents two basic integration oper-
ators: cartesian product and feedback, and shows that both seem sufficient to build most other
standard operators such as synchronous product and sequential, double sequential, concurrent
and synchronous parallel operators, by composition.



62



Chapter IV

Generic components

1 Components as coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.3 Genericity of component definition . . . . . . . . . . . . . . . . . . . . . 67

2 Component traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.1 Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2 Component Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 Final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Minimal component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

This chapter presents a formal generic framework for developing basic components viewed
as state-based systems. As explained in the introduction, our formalization is based on Barbosa’s
components [9, 10, 11, 12, 13]. We then start, in Section 1, by introducing Barbosa’s definition of a
component as well as some explicative concrete examples. We further show that this component
definition is powerful enough to be a unified generic state-based formalism by providing some
basic examples. In Section 2 we define, by relying on the work proposed by Rutten in [42], a
trace model over components using causal transfer functions. The formalization of components
and their traces as coalgebras and transfer functions respectively, allows us to extend standard
results connected to the definition of a final component in Section 3. We show, over some as-
sumptions, the existence of a final model which will be useful to define the basic integration
operators in Chapter V. Finally, Section 4 concludes with some final remarks and an assessment
of the results.



64 Chapter IV Generic components

1 Components as coalgebras

1.1 Motivation

In a series of papers [9, 10, 11], Barbosa and his colleagues used the coalgebra theory to define
a generic notion of a state-based software component. In these works, a component was then
introduced as a generalized Mealy automaton in which the dependence between outputs and
both current state and inputs is relaxed from a strict deterministic, to encompass more complex
behaviours such as partiality, non determinism, etc. The reasons for using Barbosa’s definition
are twofold:

• It fits to the standard view of functional components that is, at a high level of abstraction,
components may be considered as black boxes that take inputs and provide appropriate
outputs. The behaviour of a component is then specified by describing how inputs drive
changes in component state and how outputs are produced.

• It is considered as an excellent modeling tool for representing several kinds of computa-
tional effects, such as: determinism, non-determinism and partiality, as well as abstractly
providing a unifying formal framework in which a great diversity of state-based for-
malisms used to describe dynamical systems behaviour, such as: Mealy machines [34,
35], Labeled Transition Systems (LTS) [36, 37], Input-Output Labeled Transition Systems
(IOLTS) [40, 41] can be naturally captured (see Section 1.2). This is due to the introduction
of monads in the component definition.

1.2 Components

Definition 1.1 (Components) Let In and Out be two sets denoting, respectively, the input and output
domains. Let T be a monad. A component C is a coalgebra (S, init, α) for the signature H = T(Out×
)In : Set −→ Set where init ∈ S is a distinguished element denoting the initial state of the component
C.
When the initial state init is removed, C is called a pre-component.

Barbosa further requires that the monad T should be strong [78]. That means T is equipped
with two natural transformations: τr : TX × Y −→ T(X × Y) and τl : X × TY −→ T(X × Y)
for any sets X and Y, called the right and left strength respectively, satisfying certain coherent
conditions [78]. This requirement is mainly supposed to be able to link in [13] computations
carried by T. For instance, when composing two components C1 and C2 over T(Out1 × S1) and
T(Out2 × S2) respectively, τr followed by τl allows the mapping of

T(Out1 × S1)× T(Out2 × S2) to TT((Out1 × S1)× (Out2 × S2))

This latter can then be flattened to T((Out1 × S1)× (Out2 × S2)) via µ.
We do not require that the monad T should be strong as it was assumed in the original definition
introduced in [13]. We rather assume the existence of two natural transformations η′ and η′−1

that we will present in Section 2. These two natural transformations will be useful not only
to link computations carried by T, like strong monads do, when composing components in
Chapter V but also to define a trace model over components in Section 2.

Example 1.1 (Coffee machine) We consider a simple example of a coffee machineM modeled by the
transition diagram shown in Figure IV.1. The behaviour of M is the following: from its initial state
STDBY, when it receives a coin from the user, it goes into the READY state. Then, when the user presses



1 - Components as coalgebras 65

the “coffee” button, three cases are distinguished: (1)M serves a coffee to the user and goes back to the
STDBY state; (2)M serves a coffee to the user and goes to the FAILED state (for example, when there
is one cup in the machine); (3)M fails to deliver coffee to the user and so refunds him and goes to the
FAILED state. The only escape from the FAILED state is to have a repair.

This machine can be modeled as a componentM = (S, init, α) over the signature Pfin(Out× )In. The
state space is S = {STDBY, READY, FAILED} and init = STDBY. The sets of inputs and outputs are
In = {coin, coffee, repair} and Out = {abs, served, refund}. Finally, the transition function:

α : S −→ Pfin
(
{abs, served, refund} × S

){coin,coffee,repair}

is defined as follows:
α(STDBY)(coin) =

{
(abs, READY)

}
α(READY)(coffee) =

{
(served, STDBY), (served, FAILED), (refund, FAILED)

}
α(FAILED)(repair) =

{
(abs, STDBY)

}

STDBY READY

FAILED

coin|abs

coffee|served

coffee|served

coffee|refund

repair|abs

Figure IV.1 – Coffee machine

Example 1.2 (ATM) We consider a simple specification of a bank Automated Teller Machine (ATM)
M modeled by the transition diagram shown in Figure IV.2. The behaviour ofM is the following: from
its initial state s0, it is waiting either for a request for amount (the "amount" action) or a request for
bank account balance (the "check" action):

• if the user enters amount,M goes to s1. An internal test is then made to check whether the received
amount can be withdrawn (represented by the action τ). If there is enough money in the customer’s
account, the requested amount is withdrawn and the ATM returns to its initial state (the "cash"
action). If there is not enough money in the customer’s account, the withdraw operation fails and
an error message is displayed on the machine screen (the "screen" action).

• If the user asks for the amount of his/her account,M does an internal action and then notifies the
user by the amount (the "sold" action). It then returns back to its initial state s0.



66 Chapter IV Generic components

This machine can be modeled 1 as a componentM = (S, init, α) over the signature (Out× )In. The
state space is S = {s0, s1, s2, s3, s4} and init = s0. The sets of inputs and outputs are

In = {amount, check, sold, screen, cash, τ} and Out = {abs}

respectively. Finally, the transition function:

α : {s0, s1, s2, s3, s4} × {amount, check, sold, screen, cash, τ} −→
(
{abs} × {s0, s1, s2, s3, s4}

)
is defined as follows:


α(s0)(amount) = (abs, s1)

α(s0)(check) = (abs, s3)

α(s1)(τ) = (abs, s2)


α(s3)(τ) = (abs, s4)}
α(s2)(screen) = (abs, s0)

α(s2)(cash) = (abs, s0)

α(s4)(sold) = (abs, s0)

s0

s1

s2

s3

s4

amountcheck

ττ

cash

sceen

sold

Figure IV.2 – ATM component

Example 1.3 (Pedestrian crossing) A pedestrian crossing is a portion of a roadway where pedestri-
ans are permitted to cross the roadway. A typical view of a pedestrian crossing can be seen in Figure IV.3.
It consists of two essential parts: the road and the crosswalk. A pedestrian crossing system is then made
to avoid any interactions between pedestrians that want to cross the crosswalk and vehicles that want to
cross the road. A traffic light is then usually used to control pedestrian and vehicle flows at the crosswalk.
Such a typical traffic light consists of three colors: green, orange and red, and behaves as follows: in the
absence of any pedestrian request, the green color is illuminated. When a pedestrian wishes to cross the
road, he then pushes the request button that sends a signal to the traffic light system to change its illumi-
nation to an orange light to prepare to stop the vehicles. Then, it switches to a red light prohibiting any
vehicle flow at the road and yielding to the pedestrians. Once the crosswalk is free from pedestrians, the
traffic light receives a signal saying the road is free and thus the green color is again illuminated. In this
way, the traffic light system allows one to yield either to pedestrians or vehicles by repetitively making
the green-orange-red-green cycle.

The traffic light system can be modeled as a componentM = (S, s0, αM) over the signature (Out× )In.
The state space is S = {s0, s1, s2, s3, s4}. The sets of inputs and outputs are:

In={stopLight, lightOk, abs} and Out={lightRed, lightOrange, lightGreen, pedestrianOk, abs}
1We deliberately omitted the abs action to make the representation easier. Hence, transitions are labeled with (a|abs)

are simply represented as transitions labeled with a.



1 - Components as coalgebras 67

Figure IV.3 – Pedestrian crossing

Finally, the transition function:

αM : S −→ ({lightRed, lightOrange, lightGreen, pedestrianOk, abs} × S){stopLight,lightOk,abs}

is defined as follows:
αM(s0)(abs) = (lightGreen, s0)

αM(s0)(stopLight) = (lightGreen, s1)

αM(s1)(abs) = (lightOrange, s2)


αM(s2)(abs) = (lightRed, s3)

αM(s3)(abs) = (pedestrianOk, s4)

αM(s4)(lightOk) = (abs, s0)

The graphical diagram of this component is shown in Figure IV.4.

s0

s1

s2s3

s4

stoplight|lightGreen

abs|lightGreen

abs|lightOrange

abs|lightRed

abs|pedestrianOk

lightOk|abs

Figure IV.4 – Pedestrian crossing modeling

Definition 1.2 (Category of components) Let C and C ′ be two components over H = T(Out× )In.
A component morphism h : C −→ C ′ is a coalgebra homomorphism h : (S, α) −→ (S′, α′) such that
h(init) = init′.
We note Comp(H) (resp. PComp(H)) the category of components (resp. pre-components) over H.

This will be in the category of pre-components PComp(H), where we will show the existence
of a final model under some conditions (see Section 3).

1.3 Genericity of component definition

Definition 1.1 is generic enough to unify in a single framework a large family of formalisms
classically used to specify state-based systems [79]. We describe the most important of them in



68 Chapter IV Generic components

three tables: Table IV.1, Table IV.2 and Table IV.3. Each table illustrates the possible models of
dynamic systems that can be framed as instances of our component definition depending on the
monad T. The first column consists of instances of the input set In, the second column consists
of instances of the output set Out, the third column introduces the possible coalgebraic models
obtained by making a particular choice for In and Out, and the fourth column gives an example
of which dynamic system can be obtained.

Table IV.1 suggests a possible2 taxonomy of coalgebras that can be obtained when T is the
identity functor id.

How to model it Resulting component Typical example
In Out
{} {abs} X −→ X run forever
{} set of actions Act X −→ X× Act infinite streams

set of inputs I {abs} X −→ X I systems with input
set of inputs I set of outputs O X −→ (X×O)I Mealy machines

Table IV.1 – The deterministic computational features

Table IV.2 suggests a possible taxonomy of coalgebras that can be obtained when T is the partial
functor (id + 1).

How to model it Resulting component Typical example
In Out
{} {abs} X −→ X + 1 systems with interruption run
{} set of actions Act X −→ (X× Act) + 1 finite streams

set of actions Act {abs} X −→ XAct + 1 systems with input
set of inputs I set of outputs O X −→ (X×O)I + 1 partial Mealy machines

Table IV.2 – The partial computational features

Table IV.3 suggests a possible taxonomy of coalgebras that can be obtained when T is the pow-
erset functor P .

To completely define IOLTS, we need to impose the supplementary property on the transi-
tion function α : S −→ P(Out× S)In:

∀i ∈ In, ∀s ∈ S, (o, s) ∈ α(s)(i) =⇒ either i = abs? or o = abs!

to express that input and output are mutually exclusive. This construct of α means that one can
define three kinds of transition depending on the label that is allowed to appear in it.

• Input-kind: the transition can only be labeled by input action, that is i|abs!;

2abs, abs? and abs! are particular fresh action, input action and output action denoting the lack of reaction, input and
output respectively.



2 - Component traces 69

How to model it Resulting component Typical example
In Out
{} {abs} X −→ P(X)

{} action set Act X −→ P(Act× X) LTS as in Milner’s CSS
action set Act {abs} X −→ P(X)Act LTS as in process algebra

input set I output set O X −→ P(O× X)I extended Mealy machines

input set I output set O
X −→

P(({!} ×O) ∪ {abs!} × X)({?}×I)∪{abs?} IOLTS

Table IV.3 – The non-deterministic computational features

• Output-kind: the transition can only be labeled by output action, that is abs?|o;

• Internal-kind: the transition is labeled by abs?|abs!.

Therefore, a transition can be labeled by input or output3 actions, but never both.

Each of these instances leads to obvious algorithms that transform each of previous models
into components according to Definition 1.1. Let us illustrate this for IOLTS models.

Definition 1.3 (IOLTS as component) Let Σ = Σ? ∪ Σ! ∪ {τ} be an alphabet of actions. Let H =

P(Out× )In be the signature associated to IOLTS where

In = ({?} × Σ?) ∪ {abs?} and Out = ({!} × Σ!) ∪ {abs!}

The transformation of an IOLTS over IOLT S(Σ) into a component over H is the application:

φ : IOLT S(Σ) −→ Comp(H)

that maps an IOLTSM = (Q, q0, Σ, Tr) to a component4 C = (S, s0, α) as follows:

• S = Q and s0 = q0;

• α : S× In −→ P(Out× S) is the function defined by the following rules:

s a−→Tr s′ and a ∈ Σ?

〈abs!, s′〉 ∈ α(s)(?a)
s a−→Tr s′ and a ∈ Σ!

〈!a, s′〉 ∈ α(s)(abs?)

s τ−→Tr s′

〈abs!, s′〉 ∈ α(s)(abs?)

We illustrate this transformation with a simple example shown in Figure IV.5.

2 Component traces

As shown in Table IV.1, Mealy automata with input set In and output set Out are coalgebras
of the functor F : Set −→ Set defined by F(X) = (Out× X)In. For a coalgebraic modeling
of Mealy automata, Rutten in [42] defined5 the final coalgebra of F (i.e. the set of all possible
observable behaviours) as causal stream functions (traditionally called transfer functions). Hence,

3Our transformation of an IOLTS into our framework is inspired from the works done by M. Phalippou in his the-
sis [39], that transform an IOLTS into finite state machine.

4IOLT S(Σ) denotes the set of input-output labeled transitions systems over the alphabet Σ.
5See Chapter III, Subsection 4.2 for more explanations for Rutten’s work.



70 Chapter IV Generic components

IOLTS M

?i

!oτ

associated component φ(M)

?i|abs!

abs? |!oabs? |abs!

Figure IV.5 – Transformation of an IOLTS into a component over P(Out× _)In

it is shown in [42, 74] that the final coalgebra of F is isomorphic to the set of all causal functions
from the set of infinite input sequences to the set of infinite output sequences equipped with the
operations of initial output and stream function derivative. In this section, similarly to Rutten’s
work, we show that the observable behaviour of our components can also be characterized by
causal functions mapping infinite input sequences to infinite output sequences.

2.1 Transfer function

In the following, we note ω the least infinite ordinal, identified with the corresponding heredi-
tarily transitive set.

Definition 2.1 (Dataflow) A dataflow over a set of values A is a mapping σ : ω → A. The set of all
dataflows over A is noted Aω.

Definition 2.2 (Derivative dataflow) Let σ be a dataflow over a set A. The dataflow σ′ derivative of
σ is defined by: ∀n ∈ ω, σ′(n) = σ(n + 1).
For every a ∈ A, let us note a.σ the dataflow σ defined by:

σ(0) = a and ∀n ∈ ω \ {0}, σ(n) = σ(n− 1)

Hence, σ = σ(0).σ′.

Transfer functions will be used to describe the observable behaviour of components. They can
be seen as dataflow transformers satisfying the causality condition as this is classically done in
control theory and physics for modeling dynamic systems [80], that is the output data at index
n only depends on input data at indexes 0, . . . , n.

Definition 2.3 (Transfer function) Let In and Out be two sets denoting, respectively, the input and
output domains. A function F : Inω −→ Outω is a transfer function if, and only if it is causal, that is:

∀n ∈ ω, ∀σ1, σ2 ∈ Inω, (∀m, 0 ≤ m ≤ n, σ1(m) = σ2(m)) =⇒ F (σ1)(n) = F (σ2)(n)

Causal transfer functions and the notion of transfer function derivative were first introduced
by Raney in [77]. Raney’s [77] also showed that both composition of two causal transfer functions
and the derivative of a causal transfer function are again causal.

Example 2.1 The function F : {0, 1}ω −→ {0, 1}ω defined for every σ ∈ {0, 1}ω and every k ∈ ω by

F (σ)(k) =
( k

∑
i=0

σ(i)
)

mod 2



2 - Component traces 71

is the transfer function that takes a sequence of bits σ ∈ {0, 1}ω and checks at each step k whether it has
received an odd number of "ones". It then returns 0 if the number of "ones" is even, and 1 otherwise. In
Example 3.1, we will define the component that implements it.

2.2 Component Traces

To associate behaviours to components by transfer functions, we have to require the existence of
two natural transformations η′ : T =⇒ P and η′−1 : P =⇒ T such that η′−1 ◦ η′ = idT where P
is the powerset functor. Indeed, from a component (S, α), we need to “compute” for an infinite
input sequence σ ∈ Inω all the outputs o after going through any sequence of states (s0, . . . , sk)

such that sj is obtained from sj−1 by σ(j− 1). However, we do not know how to characterize
sj with respect to α(sj−1)(σ(j− 1)) because nothing ensures that elements in α(sj−1)(σ(j− 1))
are (output, state) couples. Indeed, the monad T may yield a set with a structure different from
Out× S. The mapping η′Out×S maps back to this structure. η′−1

Out×S is useful for going back to T
when defining final models.

Most monads used to represent computation situations satisfy the above condition. For
instance, for the monad T : P , both η′S and η′−1

S are the identity on sets. For the functor T : id+ 1,
η′S associates the singleton {s} to any s ∈ S and the empty set to ⊥, and η′−1

S associates the state
s to the singleton {s} and ⊥ to any other subset of S which is not a singleton. Let us observe
that given a monad T, the couple (η′, η′−1) when it exists, is not necessarily unique. Indeed, for
the monad T = id, η′S can still be defined as s 7→ {s}. However, η′−1

S is not unique. Indeed,
any mapping η′−1

S that associates the singleton {s} to s, and every subset of S which is not a
singleton to a given s′ ∈ S, satisfies η′−1

S ◦ η′S = idS.

Hence, in the following, given a signature T(Out× )In, we will assume given a couple (η′, η′−1)

such that η′−1 ◦ η′ = id.

In the following, we note η′Out×S(α(s)(i))|1 (resp. η′Out×S(α(s)(i))|2 ) the set composed of all
first arguments (resp. second arguments) of couples in α(s)(i).

Let us now associate behaviours to components by their transfer functions. Let us consider
a state s ∈ S of such a component C = (S, α) over T(Out× )In. Applying α to s after receiving
an input i1 ∈ In yields a set η′Out×S(α(s)(i1)) of couples (output|successor state). Similarly, after
receiving a new input i2 ∈ In, we can repeat this step for each state s′ ∈ η′Out×S(α(s)(i1))|2 and
form another set of couples (output|successor state). Thus, we get for each infinite sequence of
inputs 〈i1, i2, . . .〉 ∈ Inω, a set of infinite sequences of outputs 〈o1, o2, . . .〉 ∈ Outω. All we can
possibly observe about a state s ∈ S is obtained in this way. More formally, this leads to:

Definition 2.4 (Component behaviour) Let C = (S, init, α) be a component over T(Out× )In. The
behaviour of a state s of C, noted behC(s) is the set of transfer functions F : Inω −→ Outω that
associate to every σ1 ∈ Inω a dataflow σ2 ∈ Outω such that there exists an infinite sequence of couples
(o1, s1), . . . , (ok, sk), · · · ∈ Out× S satisfying:

∀j ≥ 1, (oj, sj) ∈ η′Out×S(α(sj−1)(σ1(j− 1)))

with s0 = s, and for every k < ω, σ2(k) = ok+1.

Hence, C’s behaviour is the set behC(init).

Example 2.2 The behaviour behM(s0) of the coffee machineM presented in Example 1.1 is defined by
all the functions

Fσ : {coin, coffee, repair}ω −→ {abs, served, refund}ω



72 Chapter IV Generic components

where σ = n1.n′1.n2.n′2 . . . ni.n′i · · · ∈Nω defined by

Fσ : (coin.coffee)n1 .(coin.coffee.repair)n′1 . . . (coin.coffee)ni .(coin.coffee.repair)n′i . . .
7→
(abs.served)n1 .(abs.refund.abs)n′1 . . . (abs.served)ni .(abs.refund.abs)n′i . . .

where
(coin.coffee)0 = (coin.coffee.repair)0 = (abs.served)0 = (abs.refund.abs)0 = ε (the empty word).

Hence, the transfer function that would remain in the loop between the states STDBY and READY could
be defined by any function Fσ with σ = n1.0.n2.0 . . . ni.0 . . .

In the context of our work, we will need to use finite traces. Finite traces are finite sequences
of couples (input|output) defined as follows :

Definition 2.5 (Component finite traces) Let F ∈ behC(init) be a trace of a component C. Let
n ∈ N. The finite trace, noted F|n , of length n associated to F is the whole set of the finite sequence
〈i0|o0, . . . , in|on〉 such that there exists x ∈ Inω where for every j, 0 ≤ j ≤ n:

• x(j) = ij

• and F (x(j)) = oj

Hence, Trace(C) = ⋃
F∈behC (init)

⋃
n∈N

F|n defines the whole set of finite traces over C.

Taking advantage of having generically defined components, and having shown that most
state-based formalisms are instances of Definition 1.1, by Definition 2.4, we can associate to
them semantics from causal functions. We have formally presented in Section 1.2 the mapping
φ : IOLT S(Σ) −→ Comp(H) that defines how an IOLTS can be transformed in our frame-
work (see Definition 1.3). Similarly, we define another transformation φt allowing us to make
the link between the set of traces of an IOLTS modelM and its associated component φ(M) in
our framework.

Definition 2.6 LetM ∈ IOLT S(Στ) be an IOLTS and tr ∈ Trace(M). Let φ(M) ∈ Comp(H)

be its associated component. The transformation of Trace(M) into Trace(φ(M)) is the function:

φt(M) : Trace(M) −→ Trace(φ(M))

which is inductively defined as follows:

• for every6 trace tr = ε ∈ trace(M), φt(tr) = ε;

• for every trace tr =?i ∈ trace(M), φt(tr) =?i|abs!;

• for every trace tr =!o ∈ trace(M), φt(tr) = abs?|!o;

• for every trace tr = τ ∈ trace(M), φt(tr) = abs?|abs!;

• for every trace tr = a1 . . . an ∈ trace(M) with a ∈ Στ , φt(tr) = φt(a1) . . . φt(an).

Corollary 2.1 For any IOLTSM, φt(M) is bijective, i.e. Trace(φ(M)) = φt(Trace(M)).

6ε stands for the empty trace.



3 - Results 73

3 Results

Following Rutten’s works [74, 42], this trace model can be computed. This first requires the
existence of a final model in the category PComp(H). As usual, this terminal model can be
obtained under some conditions on the cardinality of the set yielded by the mapping behC for
every component C = (S, α) ∈ PComp(H).

3.1 Final model

The condition we need to obtain the existence of a final model is the following:

Assumption: we suppose that for every pre-component C = (S, α) over a signature H = T(Out× )In,
and for every s ∈ S, the cardinality of behC(s) is less than a cardinal κ.

This assumption allows us then to define a coalgebra (Γ, π) over H and to show that it is final
in PComp(H).

• Γ = P≤κ({F : Inω −→ Outω | F is causal})

• for every F ∈ Γ and for every i ∈ In, π(F)(i) = η′−1
Out×Γ(Π) where:

Π =
{
(o, F′o) | o ∈ ⋃

F∈F

(F (i.x)(0)) and,

F′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ F},

for x ∈ Inω chosen arbitrarily
}

Let us note here that using F′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ F} instead of F′ =

{F (i.x)′ | F ∈ F} in the definition of (Γ, π) allows us to keep the computational effects car-
ried by the monad T. This is done by linking the output o to the derivative function set F′ i.e.
the derivative function set is not only linked to the input i but also to the output associated to i.
This construction of the set F′ is useful to prove that (Γ, π) is final in PComp(H).

F

F′o1

F′oj

F′on

...

i|o1

i|oj

i|on

Theorm 3.1 Let H = T(Out× )In be a signature such that for every pre-component C = (S, α) over
H, and for every s ∈ S, |behC(s)| ≤ κ. Then, the coalgebra (Γ, π) is final in PComp(H).

Proof Let (Γ, π) be as stated, and let C = (S, α) ∈ PComp(H) be an arbitrary component. We
have to show that there exists a unique homomorphism of components S → Γ. For this, let us take the
behaviour mapping behC : S −→ Γ (see Definition 2.4) which for every s ∈ S associates a finite set of



74 Chapter IV Generic components

transfer functions F = {F : Inω −→ Outω | F is causal} ∈ Γ. We have to prove that it is the unique
homomorphism making the following diagram commute.

S× In Γ× In

T(Out× Γ)T(Out× S)

behC × idIn

α π

T(idOut × behC)

We first prove the commutation.
First of all, it is easy to see that the following properties are satisfied:

∀ f , f : S −→ S′, ∀X ∈ T(S) : T( f )(X) = η′−1
S′ ◦ P( f ) ◦ η′S(X) (IV.1)

∀s ∈ S, i ∈ In and ∀(o, s′) ∈ η′Out×S(α(s)(i))

behC(s′) = behC(s)′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ behC(s)}

(IV.2)

∀i ∈ In, s ∈ S and behC(s) ∈ Γ,

η′Out×S(α(s)(i))|1 = {F (i.x)(0) | F ∈ behC(s)}

(IV.3)

Hence, let s ∈ S, i ∈ In and x ∈ Inω be arbitrary. We have to prove that:

(T(idOut × behC) ◦ α)(s)(i) = (π ◦ (behC × idIn))(s)(i)

(T(idOut × behC) ◦ α)(s)(i)

= T(idOut × behC)(α(s)(i))

= η′−1
Out×Γ(P(idOut × behC)(η′Out×S(α(s)(i)))) Property IV.1

= η′−1
Out×Γ({(o, behC(s′)) | (o, s′) ∈ η′Out×S(α(s)(i))}) Property IV.2

= η′−1
Out×Γ

{
(o, behC(s)′o) | o ∈ η′Out×S(α(s)(i))|1 and ,

behC(s)′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ beh(s)}
}

Property IV.3

= η′−1
Out×Γ

{
(o, behC(s)′o) | o ∈ F ∈ behC(s)(F (i.x)(0)) and ,

behC(s)′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ behC(s)}
}

Definition of π

= π((behC(s), i))

= π(behC × idIn)(s)(i)

= (π ◦ (behC × idIn))(s)(i)

Next we have to prove uniqueness. In order to prove this last point, we need to prove the following lemma:



3 - Results 75

Lemma 3.1 For every component homomorphism f : S −→ Γ, for every x ∈ Inω and for every s ∈ S
we have:

( f (s)(x))′ = { f (s′)(x′) | s′ ∈ η′Out×S(α(s)(x(0)))|2}

where x′ is the derivative of x.

Proof

( f (s)(x))′ =
{
(o1, o2, . . . , ok, . . . )′ | ∃s0, s1, . . . , sk, · · · ∈ S

such that s = s0, 〈o1, s1〉 ∈ η′Out×S(α(s0)(x(0)))
and ∀2 ≤ j ≤ k− 1, (oj, sj) ∈ η′Out×S((sj−1)(x(j− 1))),

and ok ∈ η′Out×S(α((sk)(x(k)))|1)
}

=
{
(o2, . . . , ok, . . . ) | ∃s1, . . . , sk, · · · ∈ S

such that s1 ∈ η′Out×S(α(s0)(x(0)))|2
and ∀2 ≤ j ≤ k− 1, sj ∈ η′Out×S(α((sj−1)(x(j− 1))))|2 ,

and ok ∈ η′Out×S(α(sk)(x(k)))|1
}

= { f (s1)(x′) |s1 ∈ η′Out×S(α(s0)(x(0))|2}
= { f (s′)(x′) |s′ ∈ η′Out×S(α(s)(x(0))|2}

End

Now, let us assume that g : S→ Γ is also a homomorphism of components. Let us show that the relation
R ⊆ Pκ(Outω)×Pκ(Outω) defined as:

R = {〈g(s)(x), beh(s)(x)〉 | s ∈ S, x ∈ Inω, g(s)(x) = beh(s)(x)}

is a bisimulation.
It can be shown by coinduction on x ∈ Inω, that for all s ∈ S we have:

g(s)(x) = beh(s)(x)

The initial set outputs of g(s)(x) and beh(s)(x) agree, since at the initial input x(0) of x, we have:

g(s)(x)(0) = η′Out×S(α(s)(x(0))|1 = beh(s)(x)(0)

(g(s)(x))′ = (g(s)(x(0).x′))′ = {g(s′)(x′) | s′ ∈ η′Out×S(α(s)(x(0)))|2} Lemma 2

(beh(s)(x))′ = (beh(s)(x(0).x′))′ = {beh(s′)(x′) | s′ ∈ η′Out×S(α(s)(x(0)))|2} Lemma 2

Hence the function derivatives sets are also R-related, and we conclude that R is a bisimulation.
End

3.2 Minimal component

A final model of the functor F = T(Out× )In provides an abstract model of all possible be-
haviours of its F-coalgebras. Hence, in practice, it cannot be handled as a whole, but we can
construct the minimal part of it (minimality refers to the cardinality of the state set) for every



76 Chapter IV Generic components

state s ∈ S of a F-coalgebra C = (S, α). This is done by computing the smallest subcoalgebra
in (Γ, π) containing behC(s). More generally, given a subset F ∈ Γ of causal functions, we can
compute the smallest subcoalgebra in (Γ, π), noted 〈F〉, containing F. This coalgebra is called
the coalgebra generated by F in (Γ, π) in [5].

This construction will be useful to us to define our composition operators (see Chapter V).

Definition 3.1 (Component generated by F) Let (Γ, π) be the final model over H = T(Out× )In.
Let F ∈ Γ. The component 〈F〉 generated by F in (Γ, π) is the component (〈F〉, F, α〈F〉) defined as
follows:

• F is the initial state,

• 〈F〉 is the set of transfer function sets inductively defined as follows:

– 〈F〉0 = {F}

– 〈F〉j=
{

G′ | ∃G ∈ 〈F〉j−1, ∃i ∈ In, ∃o ∈ Out, o ∈ ⋃
F∈G

F (i.x)(0)

and G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G},

for x ∈ Inω chosen arbitrarily
}

Hence, 〈F〉 = ⋃
j<ω
〈F〉j

• α〈F〉 : 〈F〉 × In → T(Out× 〈F〉) is the mapping which for every G ∈ 〈F〉, and for every input
i ∈ In associates η′−1

Out×〈F〉(Π
′) where Π′ is the set:

Π′ =
{
(o, G′o) | o ∈ ⋃

F∈G

(F (i.x)(0)) and,

G′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ G},

for x ∈ Inω chosen arbitrarily
}

It is easy to notice that both components C = (S, init, α) and 〈behC(init)〉 share the same trace
semantics i.e. Trace(C) = Trace(〈behC(init)〉)) = behC(init). (see Definition 2.4).

s

s1 sn

. . .

s in the component C

i1|o1 in |on
=⇒

behC (s)

behC (s)′o1
= behC (s1) behC (s)′on = behC (sn)

i1|o1 in |on

. . .

behC (s) in the component Γ

From the finality of (Γ, π), the component 〈F〉 generated by F in (Γ, π) can be built by a re-
peated computation of derivative sets starting from F. The state of 〈F〉 therefore contains all
derivative sets of F and may eventually not be finite. In the following we will be only interested
in component 〈F〉 with finite state spaces.



3 - Results 77

Example 3.1 (Minimal component) For a better understanding of the definition of a minimal compo-
nent, we consider an example of binary Mealy machineM modeled by the transition diagram shown on
Figure IV.6. This machineM is considered as a componentM = ({s0, s1, s2}, s0, α) over the signature
({0, 1} × ){0,1} where the transition function:

α : {s0, s1, s2} −→ ({0, 1} × {s0, s1, s2}){0,1}

is defined as follows:{
α(s0)(0) = (0, s2)

α(s0)(1) = (1, s1)

{
α(s1)(0) = (1, s1)

α(s1)(1) = (0, s2)

{
α(s2)(0) = (0, s2)

α(s2)(1) = (1, s1)

s0

s1

s2

0|1

0|0

1|1

0|0

1|0

1|1

Figure IV.6 – Binary Mealy automaton

It is not difficult to see that applying Definition 2.4 to the initial state s0 leads to the minimal set of
transfer functions behM(s0) = {F1} where F1 : {0, 1}ω −→ {0, 1}ω is the transfer function of
Example 2.1 i.e. the one defined for every σ ∈ {0, 1}ω and for every k ∈ ω by:

F1(σ(k)) =
( k

∑
i=0

σ(i)
)

mod 2

Now to compute the minimal component 〈behM(s0)〉, we need to compute all derivative sets of trans-
fer functions starting from behM(s0). With a simple computing, we can conclude that the state of
〈behM(s0)〉 consists of two states: {F1} and {F2} where F2 : {0, 1}ω −→ {0, 1}ω is the transfer
function defined for every σ ∈ {0, 1}ω and for every k ∈ ω by:

F2(σ(k)) = 1−
( k

∑
i=0

σ(i)
)

mod 2

Computing further derivative sets will not yield any new transfer functions sets. Thus, 〈behM(s0)〉 is
the component ({F1,F2}, {F1}, αbehM(s0)

) where:

αbehM(s0)
: {{F1}, {F2}} −→ ({0, 1} × {{F1}, {F2}}){0,1}

is the transition function defined as follows:

αbehM(s0)
({F1})(0) = (0, {F1})

αbehM(s0)
({F1})(1) = (1, {F2})

αbehM(s0)
({F2})(0) = (1, {F2})

αbehM(s0)
({F2})(1) = (0, {F1})



78 Chapter IV Generic components

and can be then depicted as:

0|0 0|11|1

1|0

4 Conclusion

The contribution of this chapter is threefold: first, it shows the effectiveness of Barbosa’s coalge-
braic definition of components in unifying in a single framework a wide variety of state-based
formalisms such as Mealy automata [34, 35], Labeled Transition Systems [36, 37] and Input-
Output Labeled Transition Systems [40, 41] by using a suitable choice of computation structures
introduced by the monad T [16, 15]. Second, this way of modeling the behaviour of components
allows us, following Rutten’s works [42, 74], to define a trace model over components by causal
transfer functions [77]. Such functions are dataflow transformations of the form: y = F (x, s, t)
where x, y and s are respectively the input, output and state of the component under considera-
tion, and t stands for discrete time. This representation of system behaviour forms the first step
towards a unified framework that will capture not only different usual computations, but also
time heterogeneity (i.e. both discrete and continuous times). Indeed, in this thesis, we restrict
ourselves to discrete time. However, there are other current works extending our framework
to be able to take into account continuous time using non-standard analysis [81]. Third, defin-
ing a trace model from causal functions (which is the main contribution of this chapter) allows
us to show the existence of a final coalgebra in the category of coalgebras over a signature
T(Out × )In under some sufficient conditions on the monad T. Final coalgebras are indeed
important because their existence is the key of co-induction, a powerful reasoning principle in
coalgebraic theory. Such a final minimal component model will be the cornerstone of defining
how components are combined to define larger components in the following chapter.



Chapter V

Integration of components

1 Basic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1.1 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2 Complex operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.1 Sequential composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.2 Double sequential composition . . . . . . . . . . . . . . . . . . . . . . . . 92

2.3 Synchronous product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.4 Concurrent composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5 Synchronous parallel composition . . . . . . . . . . . . . . . . . . . . . . 96

3 Systems and compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

So far in this part we have seen that the easiest way to model complex systems is to de-
scribe them as compositions of simpler systems, being considered as coalgebraic components.
In this chapter, we explain how to define a larger component by composition of multiple com-
ponents using integration operators. Many different integration operators have been defined
and studied in the literature such as sequential composition, double sequential composition,
synchronous product, concurrent composition or synchronous parallel composition. Here, we
will show that most of them can be obtained by a composition of two basic integration oper-
ators, namely: cartesian product and feedback. In Section 1, we will then define these two basic
operators for building larger components from simpler ones. In Section 2, we will define more
complex operators by composition of our basic integration operators. Finally, in Section 3, we
will define how systems can be built over these complex operators defined in Section 2 and will
give some concrete system examples.



80 Chapter V Integration of components

1 Basic integration

1.1 Cartesian product

The cartesian product is a composition where both components are executed simultaneously
when triggered by a pair of input values (see Figure V.1).

Definition 1.1 (Cartesian product ⊗) Let H1 = T(Out1 × )In1 and H2 = T(Out2 × )In2 be two
signatures. Let H = T((Out1 ×Out2)× )(In1×In2) be the signature resulting from the product of H1

and H2. Let us define the cartesian integration functor:

⊗ : Comp(H1)× Comp(H2) −→ Comp(H)

(
(S1, α1)In1−→ Out1−→ ,

(S2, α2)In2−→ Out2−→ ) 7→
(S, α)In1×In2−→ Out1×Out2−→

as follows: ∀C1 = (S1, init1, α1) ∈ Comp(H1), ∀C2 = (S2, init2, α2) ∈ Comp(H2),

⊗((C1, C2)) = (S, init, α)

where:

• S = S1 × S2 is the set of states,

• init = (init1, init2) is the initial state,

• α : S× (In1× In2) −→ T((Out1×Out2)× S) is the mapping defined as follows: ∀i = (i1, i2) ∈
In1 × In2 and (s1, s2) ∈ S:

α((s1, s2))(i) = η′−1
(Out1×Out2)×S

{
((o1, o2), (s′1, s′2))|(o1, s′1) ∈ η′Out1×S1

(α1(s1)(i1)) and

(o2, s′2) ∈ η′Out2×S2
(α2(s2)(i2))

}

C1

C2

In1 Out1

In2 Out2

In1 × In2 Out1 ×Out2

Figure V.1 – Cartesian product

1.2 Feedback

A component with feedback has directed cycles, where an output from a component is fed back to
affect an input of the same component (see Figure V.2). That means the output of a component



1 - Basic integration 81

in any feedback composition depends on an input value that in turn depends on its own output
value. The feedback operator is then a composition where some outputs of a component are
linked to its inputs i.e. some outputs can be fed back as inputs. In order to obtain a model
which fits our component definition, we need to take into account the computational effects of
the monad T. This monad impacts both the evolution of component states and the observation
of its outputs. Therefore, the feedback link between outputs and inputs carries part of the
structure imposed by T to the inputs. For instance, with the monad built on P for modeling
non-determinism, the feedback may bring non-determinism to the inputs of the component.

state OutIn

Figure V.2 – Illustration of a system with feedback

We introduce feedback interfaces for defining correspondences between outputs and inputs
of components. A feedback interface also allows us to keep only the inputs and the outputs that
are not involved in feedback thanks to component-wise projections πi and πo:

Definition 1.2 (Feedback interface) Let H = T(Out× )In be a signature. A feedback interface
over H is a triplet I = ( f , πi, πo) where:

• f : In×Out −→ In is a function such that:

∀(i, o) ∈ In×Out, f ( f (i, o), o) = f (i, o)

• πi : In −→ In′ and πo : Out −→ Out′ are surjective mappings1 such that:

∀(i, o) ∈ In×Out, πi(i) = πi( f ((i, o)))

The mapping f allows us to specify how components are linked and which parts of their in-
terfaces are involved in the composition process. Both mappings πi and πo can be thought
of as extensions of the hiding connective found in process calculi [82]. Thereby, the feedback
interface enables encapsulation by making the internal interactions made in the scope of the
component invisible. Such an encapsulation helps to separate both the internal behaviour and
the interaction of a component from the external interaction with the global system, and thus
deals with the interaction between components independently of the behaviour of individual
components.

Two kinds of feedback operators are usually distinguished: relaxed feedback and synchronous
feedback. The first kind means that in a reaction, the output is not simultaneous with the input.
This relaxed feedback composition depends on the previous output and the current input. The
second kind means that the reaction of a system takes no observable time [83]. Systems produce
their outputs synchronously with their inputs. More precisely, at some reaction r, the output of
system S in r must be available to its inputs in the same reaction r.

1i.e component-wise projections



82 Chapter V Integration of components

Definition 1.3 (Relaxed feedback←↩) Let H = T(Out× )In be a signature and I = ( f , πi, πo) be a
feedback interface over H. Let us note H′ = T(Out′ × )In′ . Let C = (S, s0, α) be a component over H.
Let us define for every x ∈ Inω, the set Θx whose elements are couples (x̄, yx̄) ∈ Inω ×Outω inductively
defined from an infinite sequence of states (s0, s1, . . . , sk, . . . ) of S as follows:

• x̄(0) = x(0) and yx̄(0) ∈ η′Out×S(α(s0)(x(0)))|1

• ∀n, 0 < n < ω,

– x̄(n) = f (x(n), yx̄(n− 1))

– yx̄(n) ∈ η′Out×S(α(sn)(x̄(n)))|1
– and sn ∈ η′Out×S(α(sn−1)(x̄(n− 1)))|2

Then, the operation of relaxed feedback over I , ←↩I : Comp(H) −→ Comp(H′) associates to
every component C = (S, s0, α) over H, the component (〈F〉, F, α〈F〉) over H′ where F is the set of
transfer functions F : In′ω −→ Out′ω, each one defined by F (x′) = y′ where there exists x ∈ Inω such
that there exists (x̄, yx̄) ∈ Θx satisfying

∀i < ω, x′(i) = πi(x̄(i)) and y′(i) = πo(yx̄(i))

Definition 1.3 calls for some comments. We want to build a component that hides the relaxed
feedback of a component C. As one can see in Figure V.3, the relaxed feedback component←↩I
(C) is given as a set of transfer functions, each one mapping an infinite sequence of inputs x′ ∈
In′ω to an infinite sequence of outputs y′ ∈ Out′ω. The outputs are then hidden from any state s

Cπif πox(n)x′(n) y′(n)

yx̄(n−1)

←↩I(C)

Figure V.3 – Relaxed feedback composite: ←↩I(C)

that are fed back as inputs to the successor of s. The result is a component with input and output
sets In′ and Out′ respectively. This is done by means of the feedback interface I = ( f , πi, πo).
Let us suppose that the current state of C at the nth reaction is sn ∈ S and the current external
input is x(n) ∈ In, then let us compute both new input x′(n) ∈ In′ and output y′(n) ∈ Out′

when C is triggered by x(n). First, by f , we compute the input x̄(n) = f (x(n), yx̄(n−1)). Then,
x̄(n) becomes the new input of C. Indeed, component C reacts by updating its state to sn+1 and
producing an output yx̄(n). In this way, the output of C at the nth reaction is given by relying on
the previous output yx̄(n−1) and the current input x(n). Second, by means of πi and πo, we hide
both input and output involved in the feedback, and then produce the input x′(n) = πi(x̄(n))
and the output y′(n) = πo(ȳ(n)) of the relaxed feedback component←↩I(C).

Proposition 1.1 ←↩I : Comp(H) −→ Comp(H′) is a functor.



1 - Basic integration 83

Proof It only remains for us to make a correspondence between homomorphisms in Comp(H) and
homomorphisms in Comp(H′). Let f : C1 −→ C2 be an homomorphism in Comp(H). Then, let us
define←↩I( f ) :←↩I(C1) −→←↩I(C2) where←↩I(Ci) = (〈Fi〉, Fi, α〈Fi〉) for i = 1, 2 as follows:

• ←↩I( f )(F1) = F2

• for every j, 0 < j < ω, for every G′ ∈ 〈F1〉j, we know by definition that there exists

G ∈ 〈F1〉j−1, i ∈ In and o ∈ Out such that :

– o ∈ ⋃
F∈G

(F (i.x)(0))

– G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G}

for x ∈ Inω chosen arbitrarily. It is sufficient to write down

←↩I( f )(G′) =
{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈←↩I( f )(G)

}
f being a morphism on coalgebras, we can easily show that←↩I( f )(G′) is nonempty.

Let us finish by showing that←↩I( f ) preserves identities and compositions.
For identities, let C ∈ Comp(H),←↩I (C) = 〈F〉, and let us prove by induction on the structure of F

that←↩I(idC) = id←↩I (C).

• Basic Step: By definition of←↩I(idC), one has←↩I(idC)(F) = F = id←↩I (C)(F)

• Induction Step: let G′ ∈ 〈F〉j+1. We know by definition of G′ that there exists G ∈ 〈F〉j, i ∈ In
and o ∈ Out such that o ∈ ⋃

F∈G

(F (i.x)(0)) and G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G}

for x ∈ Inω chosen arbitrarily. Then, by definition of←↩I(idC) one has:

←↩I(idC)(G′) =
{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈←↩I(idC)(G)

}
by induction hypothesis

=
{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈ id←↩I(C)(G)

}
by definition of id←↩I(C)

=
{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈ G

}
by hypothesis

= G′

= id←↩I(C)(G
′)

For preservation of composition. Let f1 : C1 −→ C2 and f2 : C2 −→ C3 be two homomorphisms in
Comp(H). Let←↩I ( f1) : 〈F1〉 −→ 〈F2〉 and←↩I ( f2) : 〈F2〉 −→ 〈F3〉 their associated homomor-
phisms in Comp(H′) where←↩I(C1) = 〈F1〉,←↩I(C2) = 〈F2〉 and←↩I(C3) = 〈F3〉.
Let us then prove by induction on the structure of F that←↩I( f2 ◦ f1) =←↩I( f2)◦ ←↩I( f1).



84 Chapter V Integration of components

• Basic Step: By definition of←↩I( f2 ◦ f1), one has

←↩I( f2 ◦ f1)(F1) = F3 by definition of ←↩I( f2)

= ←↩I( f2)(F2) by definition of ←↩I( f1)

= ←↩I( f2)(←↩I( f1)(F1))

= ←↩I( f2)◦ ←↩I( f1)(F1)

• Induction Step: let G′1 ∈ 〈F1〉j+1. We know by definition of G′1 that there exists G1 ∈ 〈F1〉j,
i ∈ In and o ∈ Out such that o ∈ ⋃

F1∈G1

(F1(i.x)(0)) and G′1 = {F1(i.x)′ | F1(i.x)(0) =

o and F1 ∈ G1} for x ∈ Inω chosen arbitrarily. By definition of ←↩I ( f1), we also know that
←↩I( f1)(G

′
1) =

{
F ′1(i.x)′ | F ′1(i.x)(0) = o and F ′1 ∈←↩I( f1)(G1)

}
.

Let us denote by the set
{
F ′1(i1.x1)

′ | F ′1(i1.x1)(0) = o1 and F ′1 ∈←↩I ( f1)(G1)
}

by G′2. This
set belongs to 〈F2〉. Then, we know by definition of G′2 that ∃G2 ∈ 〈F2〉 such that G2 =←↩I
( f1)(G1), o ∈ ⋃

F2∈G2

(F2(i.x)(0)) and G′2 = {F2(i.x)′ | F1(i.x)(0) = o and F2 ∈ G2}. By

definition of←↩I( f2), we know that←↩I( f2)(G
′
2) =

{
F ′2(i.x)′ | F ′2(i.x)(0) = o and F ′2 ∈←↩I

( f2)(G2)
}

.

Now, we have that

←↩I( f2)◦ ←↩I( f1)(G
′
1) = ←↩I( f2)(←↩I( f1)(G

′
1))

= ←↩I( f2)(G
′
2)

=
{
F ′2(i.x)′ | F ′2(i.x)(0) = o and F ′2 ∈←↩I( f2)(G2)

}
=

{
F ′2(i.x)′ | F ′2(i.x)(0) = o and F ′2 ∈←↩I( f2)(←↩I( f1)(G1))

}
=

{
F ′2(i.x)′ | F ′2(i.x)(0) = o and F ′2 ∈←↩I( f2)◦ ←↩I( f1)(G1)

}
by induction hypothesis

=
{
F ′2(i.x)′ | F ′2(i.x)(0) = o and F ′2 ∈←↩I( f2 ◦ f1)(G1)

}
= ←↩I( f2 ◦ f1)(G

′
1)

End

Example 1.1 (Syracuse’s sequence)
Syracuse’s sequence is a finite or infinite sequence of integers n0, n1, n2, . . . , ni, . . . generated2 as fol-
lows: for any i ∈N∗

ni+1 7→


ni/2 i f ni ≡ 0 (mod 2)

3ni + 1 otherwise

This sequence starts with any positive integer n, and produces at each step either half of itself (i.e. n/2)
if it is even or three times itself plus one (i.e. 3n + 1) if it is odd. We can easily see that any output
ni produced at the ith step is linked to the input at the (i + 1)th i.e. ni will be considered as the input

2N∗ = N \ {0}



1 - Basic integration 85

at the next step. Then, there is a relaxed feedback. Figure V.4 shows the component that can be con-
sidered as a structural model of the Syracuse sequence. When a new positive integer n is available, it
is directly available as an input of the component C that produces it as output. If n is even, n is sent
to the component DivideBy2 which produces as an output (n/2). If n is odd, n is sent to the com-
ponent MultipleBy3Plus1 which produces as an output (3n + 1). Both outputs of DivideBy2 and
MultipleBy3Plus1 are linked to the component ∆ which is considered as a unit delay allowing time to
pass.

C

DivideBy2

MultipleBy3Plus1

∆n0

n

parity testing

yes

no

Figure V.4 – Syracuse’s sequence component

This sequence can be modeled in our framework as a component S = (S, init, α) over the functor

(N∗ × )({⊥}×N∗)∪N∗

where:

• init is the initial state;

• S = {si | i ∈N∗} ∪ {init} is the set of states;

• α : S× (({⊥} ×N∗)} ∪N∗) −→N∗ × S is defined as follows:

α(init)(k) = (k, sk) for every k ∈N∗

and

α(sk)((⊥, k)) =

 (k/2, sk/2) if k ≡ 0 (mod 2)

(3k + 1, s3k+1) otherwise

Thus, the inputs are either:

• of the form i where i stands for the initial input received from the environment (i.e. the integer for
which we compute its associated Syracuse sequence). For instance, α(init)(10) = (10, s10) states
that the component starts running by receiving from the environment an input value 10 and goes
to state s10 while producing the output value 10.

• or pair of input values (⊥, i) where ⊥ is the external input value received from the environment3

and i is the input value feeding back from the output. For instance, α(s10)((⊥, 10)) = (5, s5)

expresses that the component receives no value from the environment and the input value 10 feeding
back from the output and goes to state s5 while producing the output value 5.

3We require that the environment provides an artificial input ⊥ to make the component react.



86 Chapter V Integration of components

Starting with the initial state init, one gets for example the following execution:

init
3|3

s3
(⊥, 3)|10

s10
(⊥, 10)|5

s5
(⊥, 5)|16

s16
(⊥, 16)|8

s8
(⊥, 8)|4

s4
(⊥, 4)|2

s2
(⊥, 2)|1

s1 (V.1)

Let us now compute the Syracuse’s feedback component. We need to compute a transfer function that
takes an input value n0 and computes its associated Syracuse sequence. For this, we have to hide both
the input and output values involved in the feedback. Taking Sequence V.1, one needs to hide the output
values 3, 10, 5, 16, 8, 4 and 2 in (⊥, 3), (⊥, 10), (⊥, 5), (⊥, 16), (⊥, 8), (⊥, 4), (⊥, 2) that are fed back as
inputs. This can be obtained by applying the relaxed feedback operator←↩I on S where I = ( f , πi, πo)

is the feedback interface defined as follows:

• f : {⊥} ×N∗ −→ {⊥} ×N∗ is the identity on {⊥} ×N∗;

• πi is the function defined as follows:

πi : N∗ ∪ ({⊥}, N∗) → N∗ ∪ {⊥}
n 7→ n
(⊥, n) 7→ ⊥

• πo : N∗ −→N∗ is the identity function on N∗.

Thus, the input-output feedback sequence computed from Sequence V.1 is the following:

〈3|3,⊥|10,⊥|10,⊥|5,⊥|16,⊥|8,⊥|4,⊥|2,⊥|1〉

Hence, it becomes clear that ←↩I (S) is equal to the component 〈F〉 with F as the set containing
the unique transfer function F : (N∗ ∪ {⊥})ω −→ N∗ω defined for every input sequence σ ∈
(N∗ ∪ {⊥})ω and for every k ∈ ω as follows:

F (σ)(k) =



σ(k) i f σ(k) 6= ⊥

{
(F (σ)(k− 1))/2 i f F (σ)(k− 1) is even

(3×F (σ)(k− 1)) + 1 i f F (σ)(k− 1) is odd
otherwise

The synchronous feedback is more difficult to define because it requires the existence of an
instantaneous fixpoint (i.e. defined at the same time and not deferred by one unit). This gives
rise to the notion of well-formed feedback composition.

Definition 1.4 (Well-formed feedback composition) Let H = T(Out× )In be a signature. Let C be
a component over H and I = ( f , πi, πo) be a feedback interface over H. We say that the synchronous
feedback composition C over I is well-formed if, and only if for every state s ∈ S and every x ∈ Inω:

there exists y ∈ Outω such that for every n < ω, y(n) ∈ η′Out×S(α(s)( f (x(n), y(n))))|1

We illustrate the last definition with the following example:

Example 1.2 (Well-formed composition) Consider two components C1 = ({s1, s2}, s1, α1) and C2 =

({q1, q2}, q1, α2) over the signature
({T, F} × ){T,F}

with the transition function α1 (respectively α2) graphically drawn on the left side (respectively on the
right side) of Figure V.5. There is then a feedback composition for C1 and a feedback composition for C2

because both outputs T and F are fed back as inputs of C1 and C2. These compositions are considered



1 - Basic integration 87

s1 s2

T|F

F|F

F|T

T|T

(a) Well-formed feedback composition of C1

q1 q2

T|F

F|F

F|T

T|F

(b) Ill-formed feedback composition of C2

Figure V.5 – Examples of feedback composition

to have a zero-delay feedback loop. Let us consider the component f : In× Out −→ In of the interface
feedback I = ( f , πi, πo) as the "and" logic operator. More formally, f : {T, F} × {T, F} −→ {T, F} is
defined as follows:

f ((i, o)) =


F if i = F or o = F

T otherwise

The composition of the component C1 is well-formed. This is due to the fact that for every state s ∈
{s1, s2} and for every input sequence x ∈ {T, F}ω there exists an output y ∈ {T, F}ω such that for
every n, n < ω, y(n) ∈ α1(s)( f (x(n), y(n))). More precisely4, one has:

• F ∈ α(s1)( f (F, F))

• F ∈ α(s1)( f (T, F))

• T ∈ α(s2)( f (F, T))

• T ∈ α(s2)( f (T, T))

On the other hand, the feedback composition of C2 is not well-formed. Indeed, similarly, as just shown
above for s1, one gets a fixed point in state q1 for both input F and T. But, there is no fixed point in
state q2 i.e. given an input sequence x ∈ {T, F}ω, there is no output sequence y(n) ∈ {T, F}ω such
that y(n) ∈ α2(q2)( f (x(n), y(n)))). In fact, if we attempt to choose x(n) = F, then C2 may stay in
state q2 and its output may be the same as the fed back input T (T ∈ α2(q2)( f (F, T))). If we attempt to
choose x(n) = T, then C2 may go either to state q1 and its output is not the same as the fed back input
T (T 6∈ α2(q2)( f (T, T)), or to stay in state q2 and its output is not the same as the fed back input F
(F 6∈ α2(q2)( f (T, F))).

Hence, systems with feedbacks not well-formed (called ill-formed) will be rejected. They are
considered to be unstable and insecure systems.

Definition 1.5 (Synchronous feedback	) Let H = T(Out× )In be a signature and I = ( f , πi, πo)

be a feedback interface over H. Let us note H′ = T(Out′ × )In′ . Let us define for every x ∈ Inω, the set
Θx of output sequences y ∈ Outω defined from an infinite sequence of states (s0, s1, . . . , sk, . . . ) of S as
follows:

4We deliberately used α1(s)( f (x(n), y(n))) instead of η′(α1(s)( f (x(n), y(n))))|1 for sake of simplicity because η′

considered here stands for the identify.



88 Chapter V Integration of components

∀n, 0 ≤ n < ω, (y(n), sn+1) ∈ η′Out×S(α(sn)( f (x(n), y(n)))) (by hypothesis, C’s feedback composi-
tion being well-formed over I , such y exists)

Then, the operation of synchronous feedback over I is the partial mapping

	I : Comp(H) −→ Comp(H′)

that associates to every component C = (S, s0, α) over H whose feedback composition is well-formed, the
component (〈F〉, F, α〈F〉) over H′ where F is the set of transfer functions F : In′ω −→ Out′ω, each one
defined by F (x′) = y′ where there exists x ∈ Inω s.t. there exists y ∈ Θx satisfying

∀i, i < ω, x′(i) = πi(x(i)) and y′(i) = πo(yx(i))

Proposition 1.2 	I : Comp(H) −→ Comp(H′) is a partial functor only defined for component C
whose the synchronous feedback composition over I is well-formed.

Proof The proof is noticeably similar to the proof given for←↩I .
End

Example 1.3 Consider again the component C1 shown in Figure V.5a and let us built the composite
component that hides the feedback, as suggested by the last definition. We then choose the component
f : In×Out −→ In as the "and" operator, πi and πo as the identities on In and Out respectively.
The function F : {T, F}ω −→ {F, T}ω defined for every x ∈ {T, F}ω and for every k, 0 ≤ k < ω, by:

F (x)(k) =

 F i f k is even

T otherwise
is the unique transfer function that can be defined using our synchronous feedback definition. Indeed,
both associated outputs to each input x ∈ {T, F} from s1 are F, and both associated outputs to each
x ∈ {T, F} from s2 are T. Then the feedback composite 	I (C) over the signature I is the component
(〈{F}〉, {F}, α〈{F}〉) where the set of states 〈{F}〉 is obtained by a repeated computation of derivative
starting from {F}. The states of 〈{F}〉 then contain the set of all derivative functions of F that are F
and F ′ where F ′ : {T, F}ω −→ {F, T}ω is the function defined for every x ∈ {T, F}ω and for every
k, 0 ≤ k < ω, by:

F ′(x)(k) =

 T i f k is even

F otherwise
Note that computing further derivative sets will not yield any new transfer functions sets.
This then leads to the following component 〈{F}〉:

q0 q1

T,F|F

T,F|T

We can also define the feedback in terms of its argument as concrete coalgebras, as done for
the product in Definition 1.1, and not on behaviours as done in Definition 1.3 and Definition 1.5.
For the synchronous feedback, this leads to:

Definition 1.6 (Synchronous feedback	c) Let H=T(Out× )In be a signature and I = ( f , πi, πo)

be a feedback interface over H. Let us note H′ = T(Out′ × )In′ . The operation of synchronous 5

5The exponent c in 	c
I is to express that feedback is defined in terms of its argument as concrete coalgebras.



2 - Complex operators 89

feedback over I is the partial functor 	c
I : Comp(H) −→ Comp(H′) that associates to every com-

ponent C = (S, init, α) over H whose the feedback composition over I is well-formed, the component
C ′ = (S′, init′, α′) over H′ such that:

• S′ = S

• init′ = init;

• α′ : S′ −→ T(Out′ × S′)In′ is the transition mapping defined by:

∀s′1 ∈ S′, ∀i′ ∈ In′, α′(s′1)(i
′) = η′−1

Out′×S′(Π) where Π is the set:

Π=
{
(o′, s′2) | ∃i ∈ In, ∃o ∈ Out, (o, s′2) ∈ η′Out×S(α(s

′
1)( f (i, o))), πi(i) = i′ and πo(o) = o′

}

Relaxed feedback can be defined similarly. Definition 1.5 and Definition 1.6 are equivalent.
Indeed, it is obvious to check that

beh	c
I (C)(init′) = beh	I (C)(F) = F

Although, 	c
I is defined more uniformly with product ⊗ because both are defined as concrete

coalgebras, the interest of 	I (resp. ←↩I ) is that the resulting component is the minimal one.
This will allow easier compositionality proofs such as those given in Section 3.3 and Section 1.1
of Chapter VIII.

2 Complex operators

As previously explained, both cartesian product and feedback operators depend mainly on the
component structure. However, when modeling systems, there is not only a need to specify
component structure, but also some requirements for the input and output sets. On one hand,
there is a need to make some component actions private and therefore inaccessible or hidden
to the environment. To make this possible, our framework has to offer an operation to do that.
This operator is classically called hiding6. Hidding aims to delimit the scope of both input and
output sets. Let us observe that this operator can be naturally defined in terms of the feedback
operator by taking the elements f , πi and πo of the feedback interface I as follows:

• f : In×Out −→ In is the mapping defined by (i, o) 7→ i;

• πi : In −→ {abs} ∪ In \ In′ is the mapping defined by:

πi(i) =

{
i if i ∈ In \ In′

abs otherwise

• πo : Out −→ {abs} ∪Out \Out′ is the mapping defined by:

πo(o) =

{
o if o ∈ Out \Out′

abs otherwise

6also known as restriction operation.



90 Chapter V Integration of components

In the following, we denote by C[hin, hout] a component C over T(Out× )In in which In and Out
are restricted using hin and hout where hin and hout stand for πi and πo respectively.

On the other hand, we need another operation that allows us to rename component actions.
This is useful when components have a common behavioural pattern and can be seen as spe-
cific instances of a generic component. We then define an operation called renaming7 aiming
to rename inputs and outputs of components. The renaming operation is defined as a pair of
bijective functions

rin : In −→ In′ and rout : Out −→ Out′

that maps each i ∈ In to an element i′ ∈ In′ (respectively, each o ∈ Out to an element o ∈ Out′).
We denote by C]rin ,rout a component C over T(Out× )In in which In and Out are renamed using
rin and rout.

Definition 2.1 (Complex operator) The set of complex operators, is inductively defined as follows:

• is a complex operator of arity 1;

• op is a complex operator of arity n and (rin, rout) is a renaming couple, then (rin, rout)(op) is a
complex operator of arity n;

• if op1 and op2 are complex operators of arity n1 and n2 respectively, then op1 ⊗ op2 is a complex
operator of arity n1 + n2;

• if op is complex operator of arity n and I is a feedback interface, then	I(op) is a complex operator
of arity n;

• if op is complex operator of arity n and I is a feedback interface, then ←↩I (op) is a complex
operator of arity n.

To show that both cartesian product and feedback operators are expressive enough to de-
fine, by composition, standard composition operators, we explain in this section how sequen-
tial, double sequential, concurrent and synchronous parallel compositions, and synchronous
product can be obtained by their composition. Hence, the definition of the feedback interface
I = ( f , πi, πo) is rather wide and abstract in the sense that each suitable choice of f , πi and πo

gives a particular semantic to the feedback composition and then a way of defining the global
and final reaction of the composition of a set of components.

Before defining these operators in our framework, let us note two important points:

• there seems to be no consensus on the terminologies used to describe composition oper-
ators. For instance, sequential composition is introduced as "cascade composition" in [84,
85] and "1-way-cascade" in [86], the synchronous parallel composition is called "syn-
chronous composition" in [87] and does not have the same semantic as "interleaving par-
allel composition" introduced in [86]. The cartesian product where the set of inputs are
considered as disjoint is called "synchronous side-by-side composition" in [85]. The con-
current composition is called "asynchronous side-by-side composition" in [85], and there
are many other examples. Therefore, we prefer to choose the terminology the best adapted
to our framework, and give the informal definition of each operator before giving its for-
mal definition to avoid any confusing terminology. Further technical details about the
different kinds of composition presented in the following can be found in textbooks such
as [84, 85, 88].

7also known as relabeling operation.



2 - Complex operators 91

• The symbol abs is previously used to express the absence of component reaction when
modeling IOLTS as components. Here, it is also useful for building complex components.
Hence, the sets In1 and In2 (respectively, Out1 and Out2) may include some special action,
denoted by abs, in order to allow components to stutter8. For instance, if the input action
is (abs, i2) with i2 6= abs, the reaction of the composite consists only of the reaction of
the second component (i.e. the composite behaves like the second component). Double
stuttering corresponds to the input (abs, abs) with the following additional requirement
that, for any s ∈ S1 × S2, η′(Out1×Out2)×S(α(s)((abs, abs))) = {((abs, abs), s)}. We will see
later in this section that this can be useful for building larger components from smaller
ones using composition. This is of interest if we want to take into account a reaction of the
composite with only one of the components that reacts.

2.1 Sequential composition

The sequential composition (called also cascade composition, or series composition), denoted by C =

B((C1, C2)), of two components C1 and C2 corresponds to a composition where both compo-
nents C1 and C2 are interconnected side-by-side and the output of one is the input of the other.
Figure V.6 illustrates this kind of composition.

C1 C2In1 Out2

Figure V.6 – Sequential composition

A reaction of C consists then of a reaction of both C1 and C2, where C1 reacts first, produces its
outputs, and then C2 reacts. That is to say, when C1 is triggered by an input i from the environ-
ment, C1 executes i and the produced output is fed to C2. A requirement for this composition
to be defined is that Out1 has to be included into In2 (Out1 ⊆ In2). This ensures that any output
produced by C1 is an acceptable input to C2.

This kind of composition can be naturally defined in our framework using both the feedback
operator and the cartesian product by:

B((C1, C2)) = �I ((C1 ⊗ C2)) (V.2)

where I = ( f , πi, πo) is the feedback interface defined for every (i, i′) ∈ In1 × In2 and (o, o′) ∈
Out1 ×Out2 as follows:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

and� stands for←↩ or	 depending on whether we want a relaxed or instantaneous sequential
composition. For the first sequential composition, the output o produced from the component
C1 after triggering by an input i takes some observable time to feed to the component C2. In this
case, B will be denoted by Br. For the second one, the output o produced from the component
C1 after triggering by an input i is directly fed to the input of the component C2. In this case, B
will be denoted by Bs.

8stutter indicates that no progress of the component execution is made.



92 Chapter V Integration of components

Note that in both cases there is a causality dependency; that is, the outputs of C1 can affect the
behaviour of C2 i.e. sequential composition entails an ordering of the component reactions.

As already mentioned, our synchronous feedback operator 	 is only applied to systems
whose composition is well-formed. Therefore, applying this operator to the cartesian product
⊗((C1, C2)) of two components C1 and C2 requires that the composition of ⊗((C1, C2)) is well-
formed.

Theorm 2.1 Let H1 = T(Out1 × )In1 and H2 = T(Out2 × )Out1 be two signatures such that Out1⊆
In2. Let I = ( f , πi, πo) be the feedback interface defined for every (i, i′) ∈ In1 × In2 and every (o, o′) ∈
Out1 ×Out2 as follows:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

Let C1 ∈ Comp(H1) and C2 ∈ Comp(H2). Then the feedback composition of ⊗((C1, C2)) is
well-formed.

Proof Let C1 = (S1, α1) ∈ Comp(H1), C2 = (S2, α2) ∈ Comp(H2) and C = ⊗((C1, C2)) = (S, α)

be the cartesian product of C1 and C2. Let us show that the synchronous feedback composition of C is
well-formed. For this, let (s1, s2) ∈ S be a state in S and (i1, i2) be an input in In1 × In2 and then show
that there exists an output (o1, o2) ∈ Out1 ×Out2 such that:

(o1, o2) ∈ η′(Out1×Out2)×S(α((s1, s2))( f ((i1, i2), (o1, o2))))|1 (1)

i.e. by the definition of f (o1, o2) ∈ η′(Out1×Out2)×S(α((s1, s2))((i1, o1)))|1
(i1, i2) ∈ In1× In2, then there exists an output o1 ∈ η′Out1×S1

(α1(s1)(i1))|1 . We also know that o1 is an
input of C2 since Out1 ⊆ In2. Hence, there exists an output o2 ∈ η′Out2×S2

(α2(s2)(o1))|1 . We can now
conclude that (i1, o1) is an input of C and there exists an output (o1, o2) of C such that:

(o1, o2) ∈ η′(Out1×Out2)×S(α((s1, s2))((i1, o1)))|1

Consequently, (1) is verified.
End

Let us explain now how the synchronous sequential composition of two components can
be obtained with our modeling. Two components C1 and C2 are sequentially interconnected by
linking the output of C1 to the input of C2. This interconnection is made without taking time
(i.e. instantaneously). Suppose that at the nth reaction the input action of C = Bs((C1, C2))

is x(n) = (i1n, i2n), the state is sn = (s1n, s2n) (s1n is the state of component C1 and s2n is the
state of component C2). There is an output action y(n) = (o1n, o2n) ∈ η′Out×S(sn)( f (x(n), y(n))|1
because the feedback composition of C is well-formed. Then, f ((i1n, i2n), (o1n, o2n)) becomes
the new input action of C. This is equal to (i1n, o1n) according to the definition of I . This
means i1n becomes the input of C1 and the output action o1n of C1 becomes the input of C2 at
the nth reaction. Then, component C1 (resp. C2) reacts by updating its state to s1(n+1) (resp.
to s2(n+1)) and producing an output action o1n (resp. o2n). Finally, to omit outputs that are
involved in the feedback, we use πi and πo. Hence, at any reaction n, πi((i1n, i2n)) = i1n and
πo((o1n, o2n)) = o2n.

2.2 Double sequential composition

The double sequential composition, denoted by C =./ ((C1, C2)), of two components C1 and C2

is a composition in which the system can be triggered either by an input of C1 and then feeds



2 - Complex operators 93

C1

In1

Out1

./ C2

In2

Out2

C

(In1 ∪ In1) \ (Out1 ∪Out2)

Out1 ∪Out2

Figure V.7 – Double sequential composition

the output produced to C2 or by an input of C2 and then feeds the output produced to C1 (see
Figure V.7).
In our framework, this kind of composition can be obtained by modifying the cartesian product
to be able to express not only the component reaction of the form (i1, i2)/(o1, o2) but also those
of the form (i2, i1)/(o2, o1) while keeping the sequential feedback interface I as defined in Sec-
tion 2.1. In other words, we extend the cartesian product operator⊗ to an operator⊗e taking as
input the set (In1 × In2) ∪ (In2 × In1) and as output the set (Out1 ×Out2) ∪ (Out2 ×Out1). This
operator can be naturally expressed using both the sequential operator Bs and the cartesian
product ⊗ as follows:

⊗e((C1, C2)) = Bs(Bs(C0,⊗(C1, C2)), C ′0) (V.3)

where:

• C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)× )(In1×In2)∪(In2×In1)

where α0 is the transition mapping defined by: ∀(i, i′) ∈ (In1 × In2) ∪ (In2 × In1)

α0(init0)(i, i′) =

 ((i, i′), init0) if (i, i′) ∈ In1 × In2

((i′, i), init0) otherwise

• C ′0 = ({init′0}, init′0, α′0) is the component over the signature

T((Out1 ×Out2) ∪ (Out2 ×Out1)× )(Out1×Out2)

where α′0 is the transition mapping defined by: ∀(o, o′) ∈ Out1 ×Out2

α′0(init′0)(o, o′) =

 ((o, o′), init′0) if (o, o′) ∈ (Out1 ∩ In2)×Out2

((o′, o), init′0) if (o, o′) ∈ Out1 × (Out2 ∩ In1)

Now, it is expected that ./ (C1, C2) should be 	I(⊗e(C1, C2)) with I as the sequential feedback
interface, however this is not the case due to the fact that the feedback composition of⊗e(C1, C2)

over the sequential interface I is not necessarily well-formed. Indeed, ⊗e(C1, C2) may take an
input (i1, i2) for which there is no output (o1, o2) that feeds back as input to ⊗e(C1, C2). For
instance, when i1 ∈ In1 ∩ Out2 and i2 ∈ In2 \ Out1. To cope with this problem, it suffices to
replace the set of inputs of ⊗e(C1, C2) by

((In2 \Out2)× (In2 ∩Out1)) ∪ ((In2 \Out1)× (In1 ∩Out2))



94 Chapter V Integration of components

C1

In1

Out1

⊗e C2

In2

Out2

C

(In1 × In2) ∪ (In2 × In1)

(Out1 ×Out2) ∪ (Out2 ×Out1)

Figure V.8 – Extended cartesian product ⊗e

instead of (In1 × In2) ∪ (In2 × In1), and define C0 over the signature

T((In1 × In2)× )((In1\Out2)×(In2∩Out1))∪((In2\Out1)×(In1∩Out2))

where α0 is the transition mapping defined by:
∀(i, i′) ∈ ((In1 \Out2)× (In2 ∩Out1)) ∪ ((In2 \Out1)× (In1 ∩Out2))

α0(init0)((i, i′)) =

 ((i, i′), init0) if (i, i′) ∈ (In1 \Out2)× (In2 ∩Out1)

((i′, i), init0) otherwise

Figure V.9 illustrates a simple example of the application of the extended cartesian product.

⊗e
a|b e|m b|c d|e (a,b)|(b,c) (d,e)|(e,m)

Figure V.9 – Example: illustration of ⊗e

Hence, it is easy to see that the synchronous feedback composition of ⊗e((C1, C2)) is well-
formed. Thus, the double sequential composition is defined by:

./ ((C1, C2) =	I(⊗e(C1, C2)) (V.4)

with I is the sequential feedback interface.

2.3 Synchronous product

The synchronous product, denoted by C = ~((C1, C2)), of two components C1 and C2 corresponds
to a composition where both components C1 and C2 are executed independently or jointly, de-
pending on the input. Hence, C1 and C2 are simultaneously executed when triggered by a joint
input i that belongs to both inputs set of C1 and C2 (see Figure V.10).
This kind of product can also be naturally expressed in terms of the synchronous feedback
operator and the cartesian product (see Figure V.11) as follows:

~((C1, C2)) = Bs(C0, (C1 ⊗ C2)) (V.5)



2 - Complex operators 95

C1

In1

Out1

~ C2

In2

Out2

C

In1 ∪ In2

Out1 ×Out2

Figure V.10 – Synchronous product

where C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)× )In1∪In2

where α0 is the transition mapping defined by: ∀i ∈ In1 ∪ In2

α0(init0)(i) =


((i, i), init0) if i ∈ In1 ∩ In2

((i, abs), init0) if i ∈ (In1 \ In1 ∩ In2)

((abs, i), init0) otherwise

C0

C1

C2

In1 ∪ In2
Out1 ×Out2

Figure V.11 – Synchronous product: ~((C1, C2)) = Bs(C0, (C1 ⊗ C2))

2.4 Concurrent composition

The concurrent composition, denoted by C = ⊕((C1, C2)), of two components C1 and C2 cor-
responds to a composition where both components C1 and C2 are executed independently or
jointly, depending on the input received from environment. It combines both choice and par-
allel compositions, in the sense C1 and C2 can be simultaneously executed when triggered by a
pair of inputs (i1, i2) (i1 belongs to inputs set of C1 and i2 belongs to inputs set of C2), or sepa-
rately when triggered by an input i: if i ∈ In1, then C1 is executed and the reaction of C is that of
C1, otherwise C2 is executed and the reaction of C is that of C2. Figure V.12 illustrates this kind
of composition.
This kind of composition can also be naturally expressed in terms of the synchronous feedback
operator and the cartesian product (see Figure V.13) as follows:

⊕((C1, C2)) = Bs(Bs(C0, (C1 ⊗ C2)), C ′0) (V.6)

where



96 Chapter V Integration of components

C1

In1

Out1

⊕ C2

In2

Out2

C

In1 ∪ In2 ∪ In1 × In2

Out1 ∪Out2 ∪Out1 ×Out2

Figure V.12 – Concurrent composition

• C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)× )In1∪In2∪In1×In2

where α0 is the transition mapping defined by: ∀i ∈ In1 ∪ In2 ∪ In1 × In2

α0(init0)(i) =


(i, init0) if i ∈ In1 × In2

((i, abs), init0) if i ∈ In1

((abs, i), init0) otherwise

• C ′0 = ({init′0}, init′0, α′0) is the component over the signature

T((Out1 ∪Out2 ∪Out1 ×Out2)× )Out1×Out2

where α′0 is the transition mapping defined by: ∀o = (o1, o2) ∈ Out1 ×Out2

α′0(init′0)(o) =


(o1, init′0) if o ∈ Out1 × {abs}

(o2, init′0) if o ∈ {abs} ×Out2

(o, init′0) otherwise

C0

C1

C2

C ′0In1 ∪ In2 ∪ In1 × In2 Out1 ∪Out2 ∪Out1 ×Out2

Figure V.13 – Concurrent composition: ⊕((C1, C2)) = Bs(Bs(C0, (C1 ⊗ C2)), C ′0)

2.5 Synchronous parallel composition

The synchronous parallel composition, denoted by C = �((C1, C2)), of two components C1 and C2

is a composition in which both C1 and C2 are executed independently or jointly depending on
the input, in such a way that each input action received by C from the environment consists
exclusively of an input action of either C1 or C2 i.e. there is no common input action for C1 and



2 - Complex operators 97

C2. Indeed, when the global system receives an input which is supposed to be an input action
of C1, C1 reacts by producing an output. If that output does not belong to the input set of C2, the
reaction of the global system consists only of the reaction of C1. Otherwise, the output produced
is directly fed to C2 and the reaction of the global system consists of the reaction of both C1 and
C2 (one falls into the same composition as the sequential9 composition). In the same manner,
when the global system receives an input supposed to be an input action of C2, C2 reacts by
producing an output. If that output does not belong to the input set of C1, the reaction of the
global system consists only of the reaction of C2. Otherwise, the output produced is directly
fed to C1 and the reaction of the global system consists of the reaction of both C1 and C2 (see
Figure V.14).

C1

In1

Out1

Out1 ∩ In2

Out2 ∩ In1

C2

In2

Out2

C

In1 ∪ In2 \Out1 ∪Out2

Out1 ∪Out2 \ In1 ∪ In2

Figure V.14 – Synchronous parallel composition

This kind of composition can be seen as a general composition embodying both the synchronous
and parallel (or interleaving parallel) aspects of composition. On one hand, it is synchronous
in the sense that all common actions between C1 and C2 are synchronized. That means each
output of C1 that is fed as input of C2 (i.e. Out1 ∩ In2) and each output of C2 that is fed as input
of C1 (Out2 ∩ In1) are hidden (i.e. synchronized). They are not observable from the outside.
On the other hand, it is parallel in the sense that both components C1 and C2 are considered
autonomous, that is to say, a component may produce an output o regardless of whether o is
specified as an input of the other component.

This kind of operator is not easy to be formally defined in our framework without any spe-
cial treatment. In fact, it is not clear how the global reaction of the integrated system is given
when outputs produced by C1 (respectively C2) are unspecified in C2 (respectively C1). Never-
theless, let us observe that if the concurrent composition operator ⊕ is extended to an operator
⊕e taking as inputs not only the set In1 ∪ In2 ∪ In1× In2, but also the set In2× In1, and modifying
the sequential feedback signature to deal with cases where component outputs are not fed back
as inputs, we do not have that problem.

Let us first define the extended concurrent operator ⊕e. Similarly as ⊕, ⊕e can also be
naturally expressed in terms of the synchronous feedback operator and the cartesian product
as follows:

⊕e((C1, C2)) = Bs(Bs(C0, (C1 ⊗ C2)), C ′0) (V.7)

where

1. C0 = ({init0}, init0, α0) is the component over the signature

T((In1 × In2)× )(In1\Out2)∪(In2\Out1)∪((In1\Out2)×(In2∩Out1))∪((In2\Out1)×(In1∩Out2))

where α0 is the transition mapping defined by:

∀i ∈ (In1 \Out2)∪ (In2 \Out1)∪ ((In1 \Out2)× (In2 ∩Out1))∪ ((In2 \Out1)× (In1 ∩Out2))

9Note it is easy to see that the double sequential composition is a particular case of the synchronous parallel compo-
sition.



98 Chapter V Integration of components

C1

In1

Out1

⊕e C2

In2

Out2

C

(In1 \Out1) ∪ (In2 \Out2) ∪ ((In1 ∩Out2)× (In2 ∩Out1)) ∪ ((In2 \Out1)× (In1 ∩Out2))

Out1 ∪Out2 ∪Out1 ×Out2 ∪Out2 ×Out1

Figure V.15 – Extended concurrent composition ⊕e

α0(init0)(i) =



((i1, i2), init0) if i = (i1, i2) ∈ ((In1 \Out2)× (In2 ∩Out1))

((i2, i1), init0) if i = (i1, i2) ∈ ((In2 \Out1)× (In1 ∩Out2))

((i, abs), init0) if i ∈ (In1 \Out2)

((abs, i), init0) otherwise

2. C ′0 = ({init′0}, init′0, α′0) is the component over the signature

T((Out1 ∪Out2 ∪ (Out1 ×Out2) ∪ (Out2 ×Out1))× )Out1×Out2

where α′0 is the transition mapping defined by: ∀o = (o1, o2) ∈ Out1 ×Out2

α′0(init′0)(o) =



(o1, init′0) if o ∈ Out1 × {abs}

(o2, init′0) if o ∈ {abs} ×Out2

(o, init′0) if o ∈ Out1 ×Out2

((o2, o1), init′0) otherwise

Figure V.16 illustrates a simple example of the application of the extended concurrent operator.

In this way, the synchronous parallel composition is defined in our framework as:

�(C1, C2) =	I (⊕e(C1, C2)) (V.8)

with I = ( f , πi, πo) is the feedback interface defined:
∀i ∈ (In1 \Out2)∪ (In2 \Out1)∪ ((In1 \Out2)× (In2 ∩Out1))∪ ((In2 \Out1)× (In1 ∩Out2)) and
o ∈ Out1 ∪Out2 ∪ (Out1 ×Out2) ∪ (Out2 ×Out1) as follows:

f (i, o) =

i if i ∈ (In1 \Out2) ∪ (In2 \Out1)

(i1, o1) with i = (i1, i2) and o = (o1, o2) otherwise

3 Systems and compositionality

3.1 Systems

Complex operators for basic components yield larger components that we will call systems.
However, it is not always possible to yield a component for a complex operator from any set



3 - Systems and compositionality 99

a|b b|c

⊕e

(a,b)|(b,c)

(a) Cas 1: synchro-
nization left-right

b|c a|b

⊕e

(a,b)|(b,c)

(b) Cas 2: synchro-
nization right-left

a|b c|d

⊕e

a|b c|d

(c) Cas 3: parallel
composition

Figure V.16 – Example: illustration of ⊕e

of basic components passed in arguments. Indeed, for a complex operator of the form 	I(op),
according to the component C resulting from the evaluation of op, the interface I has to be
defined over the signature of C and the feedback over C has to be well-formed over I . This
leads up to the following definition:

Definition 3.1 (Systems) Let C be a set of components. The set of systems over C is inductively
defined as follows:

• for any C ∈ C, a component over a signature H, (C) = C is a system over H and is defined
for C;

• if (rin, rout)(op) is a complex operator of arity n, then for every sequence (C1, . . . , Cn) of compo-
nents with (S, init, α)) = op(C1, . . . , Cn) is over T(Out× )In, then (rin, rout)op(C1, . . . , Cn)

is the component (S′, init′, α′) over T(rout(Out)× )rin(In) such that: S′ = S, init′ = init and
∀s′ ∈ S′, ∀i′ ∈ rin(In)

η′−1(α′(s′)(i′))|1 = rout(η
′−1(α(s′)(r−1

in (i′)))|1 and η′−1(α′(s′)(i′))|2 = η′−1(α(s′)(r−1
in (i′))|2

• if op1 ⊗ op2 is a complex operator of arity n = n1 + n2, then for every sequence

(C1, C2, . . . , Cn1 , Cn1+1, . . . , Cn)

z of components in C with each Ci over Hi = T(Oi × )Ii , if both op1 and op2 are defined for
C1, C2, . . . , Cn1 and Cn1+1, . . . , Cn respectively, then op1⊗ op2(C1, . . . , Cn) = op1(C1, . . . , Cn1)⊗
op2(Cn1+1, . . . , Cn) is a system over H = T(∏n

i=1 Oi × )∏n
i=1 Ii and op1 ⊗ op2 is defined for

(C1, . . . , Cn), else op1 ⊗ op2 is undefined for (C1, . . . , Cn);

• if 	I(op) is a complex operator of arity n, then for every sequence (C1, . . . , Cn) of components in
C, if op is defined for (C1, . . . , Cn) with S = op(C1, . . . , Cn) is over H, I is a feedback interface
over H and the feedback composition of S is well-formed, then 	I (op)(C1, . . . , Cn) =	I (S)



100 Chapter V Integration of components

is a system over H′ and10 	I (op) is defined for (C1, . . . , Cn), else 	I (op) is undefined for
(C1, . . . , Cn);

• if←↩I(op) is a complex operator of arity n, then for every sequence (C1, . . . , Cn) of components in
C, if op is defined for (C1, . . . , Cn) with S = op(C1, . . . , Cn) is over H and I is a feedback interface
over H, then←↩I (op)(C1, . . . , Cn) =←↩I (S) is a system over H′ and11 ←↩I (op) is defined for
(C1, . . . , Cn), else←↩I(op) is undefined for (C1, . . . , Cn).

From Proposition 1.1 and Proposition 1.2, it is not difficult to see that any complex operator
op of arity n defines a partial functor from Comp(H1)× · · · × Comp(Hn) −→ Comp(H).

3.2 Examples

In the following, we present some concrete examples illustrating our framework.

Example 3.1 (Encoder/decoder) An encoder/decoder is usually used to guarantee certain charac-
teristics (for example, error detection) when transmitting data across a link. A simple example of such an
encoder/decoder is represented in Figure V.17. It consists of two parts:

• An encoder that takes in an incoming bit sequence and produces an encoded value which is then
transmitted on the link. This encoder is considered as a component E = ({s0, s1}, s0, α1) where
the transition function α1 : {s0, s1} −→ ({0, 1} × {s0, s1}){0,1} is graphically shown in the left
of Figure V.17.

• A decoder that takes the values from the link and produces the original value. This decoder is
considered as a component D = ({q0, q1}, q0, α2) where the transition function α2 : {q0, q1} −→
({0, 1} × {q0, q1}){0,1} is graphically shown in the right of Figure V.17.

s0 s1

0|0 0|1
1|1

1|0

{0, 1}ω

{0, 1}ω

q0 q1

0|0 1|0
1|1

0|1

{0, 1}ω

{0, 1}ω

Figure V.17 – Encoder (on the left) and Decoder (on the right)

Let us now construct the encoder/decoder as a composition of the encoder and the decoder by means of the
sequential composition over a synchronous feedback. First of all, let us apply the sequential composition
Bs(⊗(E ,D)) over the synchronous feedback interface I defined for every (i, i′) ∈ In1× In2 and (o, o′) ∈
Out1 ×Out2 by:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

10 H′ is the signature of the synchronous feedback.
11 H′ is the signature of the relaxed feedback.



3 - Systems and compositionality 101

We first define the cartesian product C = ⊗((E ,D)) of E and D. It is easy to see that C is a well-formed
feedback composition over I . Let us check this for (s0, q0), we then have:

• (0, 0) ∈ η′(αC((s0, q0))( f ((0, 0), (0, 0))))|1

• (1, 1) ∈ η′(αC((s0, q0))( f ((1, 1), (1, 1))))|1

• (0, 0) ∈ η′(αC((s0, q0))( f ((0, 1), (0, 0))))|1

• (1, 1) ∈ η′(αC((s0, q0))( f ((1, 0), (1, 1))))|1

Then, we can apply the synchronous feedback operator 	I on C. This leads to a minimal component
〈{F}〉 where F : {0, 1}ω −→ {0, 1}ω is the transfer function defined for every x ∈ {0, 1}ω and every
k, 0 ≤ k < ω, by:

F (x)(k) = x(k)

Let us explain how F was obtained using a running example. For this, let us consider the bit sequence
(01)ω, and try to find a bit sequence y ∈ {0, 1}ω satisfying:

∃(s0, . . . , sk, . . . ) ∈ S | ∀n, 0 ≤ n < ω, y(n) ∈ η′Out×S(α(sn)( f (x(n), y(n))))|1
Let us suppose that the current state and the current input are the initial state s(n) = (s0, q0) and
x(n) = (0, 0) respectively. There is a y(n) = (0, 0) such that:

(0, 0) ∈ η′(αC((s0, q0))( f ((0, 0), (0, 0))))

That is to say, the component C reacts by updating its state to (s0, q0) and producing the output (0, 0).
More precisely, the output of E becomes the input of D. So, we can conclude that the input of the
encoder/decoder is π1(0, 0) = 0 and its output is πo(0, 0) = 0.
Suppose next that the current input is (1, 1). Again, there is a y(n) = (1, 1) such that

(1, 1) ∈ η′(αC((s0, q0))( f ((1, 1), (1, 1))))

That is to say, the component C reacts by updating its state to (s1, q1) and producing the output (1, 1).
So, we can conclude that the input of the encoder/decoder is π1(1, 1) = 1 and its output is πo(1, 1) = 1.

Hence, the composite machine alternates states on each reaction and produces the output bit sequence
(01)ω for the input bit sequence (01)ω.

Finally, the minimal component 〈{F}〉 that represents F is given by:

s 0|01|1

Example 3.2 The purpose of this example is to shed light on how new components can be built hier-
archically from elementary basic components involving various integration operators. The example is a
simple model of a system that checks whether two gates are well-closed (respectively well-opened) when
they receive an order to close (respectively to open). It consists of three parts: a controller C, two gates
G1 and G2 and a special component O testing behaviour of G1 and G2. When the controller receives an
order to close the gates (i.e. when "close" button is pressed), it sends to G1 and G2 a signal "close" which
is simultaneously placed to G1 and G2. Hence, each one produces either a "closed" signal or fails to do
so. We assume reactions of G1 and G2 are instantaneous, i.e. they take no time to be closed or opened.
Then, O does nothing if both G1 and G2 are well-closed or opened, and raises an alarm otherwise. It can
be thought of as a checker of closing12 and opening gates.

12 For sake of the simplicity, we suppose that no error has occurred when closing the gates.



102 Chapter V Integration of components

The global model S of this system is then built from three basic components:

Controller C: it produces a signal "close" when the close button is pressed and a signal "open" when the
open button is pressed (see Figure V.18). Both "close" and "open" signals are supposed to be submitted
simultaneously to G1 and G2.
In our framework, C is specified as the coalgebra C = ({closed, opened}, closed, αC) over the signature
({close, open} × ){buttonO,buttonC} where

αC : {closed, opened} × {buttonO, buttonC} −→ ({close, open} × {closed, opened})

is defined as follows: {
αC(closed)(buttonC) = (close, opened)

αC(opened)(buttonO) = (open, closed)

buttonO

buttonC close

open

closed opened

buttonC|close

buttonO|open

Figure V.18 – Controller system C

Gate system G: it behaves as follows: when it receives the "close" signal from C, it closes and when it
receives the "open" signal from C, it opens. Figure V.19 illustrates that behaviour.

close

open

closed

opened

up down

fail

close|closed

open|opened

close|abs

Figure V.19 – Gate system G

In our framework, G is specified as the coalgebra G = ({down, up, fail}, up, αG) over the signature
Pfin({closed, opened, abs} × ){close,open} where

αG : {down, up, fail} × {close, open} −→ Pfin({closed, opened, abs} × {up, down, fail})

is defined as follows: {
αG(up)(close) = {(closed, down), (abs, fail)}

αG(down)(open) = {(opened, up)}

Now, using our renaming operation, G1 and G2 can be seen as instances of the gate component G. Then,
G1 = G]r1 in ,r1out and G2 = G]r2 in ,r2out where both r1in and r2in are identities on {close, open} and r1out
and r2out are defined as follows:



3 - Systems and compositionality 103

r1out : {opened, closed} → {opened1, closed1}
opened 7→ opened1
closed 7→ closed1

r2out : {opened, closed} → {opened2, closed2}
opened 7→ opened2
closed 7→ closed2

Checker system O: it receives the outputs of G1 and G2 and raises an alarm if there is a gate that is not
completely closed.
In our framework, O is specified as the following transfer function:

FO : {closed1, abs} × {closed2, abs} −→ {alarm, abs}

(o, o′) 7→
{

abs i f (o, o′) = (closed1, closed2)

alarm otherwise

Now, the global model S is given as a hierarchical composition of C,G1,G2 and O. G1 and G2 are a syn-
chronous product composition, since their set inputs are the same, that together define a new component
B = ~(G1,G2) = ({b0, b1, b2, b3, b4}, b0, αB) over the signature

Pfin({(opened1, opened2), (closed1, closed2), (closed1, abs), (abs, closed2), (abs, abs)} × ){close,open}

where αB is defined as follows:{
αB(b0)(close) = {((closed1, closed2), b1), ((abs, abs), b2), ((closed1, abs), b3), ((abs, closed2), b4)}
αB(b1)(open) = {((opened1, opened2), b0)}

Figure V.20 illustrates graphically the component B.

closeopen

(closed1, closed2) (opened1, opened2) (closed1, abs) (abs, closed2) (abs, abs)

b0b1 b2

b3

b4

close|(closed1, closed2)

open|(opened1, opened2)

close|(abs, abs)

close|(closed1, abs)

close|(abs, closed2)

Figure V.20 – Synchronous product B = ~(G1,G2) of G1 and G2

Then, B and O are a sequential composition since B’s outputs are included into O’s inputs. This leads
to a new component K = Bs(B,O) = ({k0, k1, k2}, k0, αK) over the signature

Pfin({abs, alarm} × ){close,open}



104 Chapter V Integration of components

where αK is defined as follows: αK(k0)(close) = {(abs, k1), (alarm, k2)}

αK(k1)(open) = {(abs, k0)}

Figure V.21 illustrates the component K.

open

close

abs

alarm

k0k1 k2

close|abs

open|abs

close|alarm

Figure V.21 – Sequential composition K = Bs(B,O) of B and O

Hence, the global system S can be given as a sequential composition of the controller C and K. Thus,
S is the component S = Bs(C,K) = ({s0, s1, s2}, s0, αS ) over the signature Pfin({abs, alarm} ×
){buttonC,buttonO} where αS is defined as follows: αS (s0)(buttonC) = {(abs, s1), (alarm, s2)}

αS (s1)(buttonO) = {(abs, s0)}

Figure V.22 illustrates the component S .

buttonC

buttonO
abs

alarm

s0s1 s2

buttonC|abs

buttonO|abs

buttonC|alarm

Figure V.22 – Sequential composition S = Bs(C,K) of C and K

Consequently, the global system S consists of

Bs(C,Bs(~(G1,G2),O))

The two basic components G1 and G2 are composed together using the synchronous product and the
resulting component B = ~(G1,G2) is composed sequentially with O. Finally, the basic component C
is composed sequentially with the result of the second composition K = Bs(C,B).

Example 3.3 (Pedestrian crossing again) We have presented in Example 1.3 the "traffic light sys-
tem"M that constitutes the first part of the "pedestrian crossing system". In this example, we first
consider the other part of the pedestrian crossing that is the "crosswalk system" and then show the
pedestrian crossing global system obtained as a synchronous parallel composition of these two parts.



3 - Systems and compositionality 105

s′0 s′1

s′2

s′3

pedestrianOk|pedestrainGreen

request|stopLight

abs|pedestrianRed

abs|lightOk

Figure V.23 – Model of a crosswalk, to be composed in a synchronous parallel composition with
the traffic light model of Figure IV.4

The crosswalk system consists of two colored lights (see Figure IV.3): green and red. Illumination of the
green light means that the road is vehicle-free and so pedestrians can cross safely. Illumination of the
red light means there is a flow of vehicles at the road and so the pedestrians cannot cross. Such a typical
crosswalk systemM′ can be modeled by the transition diagram shown in Figure V.23. The behaviour of
M′ is the following: from its initial state s′0, when the pedestrian pushes the request button to request
the green light, M′ receives the request and goes to the s′1 state. Then, it emits a signal to the traffic
light systemM to stop the flow of vehicles while going to the s′2 state. When it receives the confirmation
signal from the traffic light system, it illuminates the green light and sets in the pending state s′4. Once
the road is free of pedestrians, it illuminates the red light and sends a signal to the traffic light system to
allow the vehicles to pass.

We model the crosswalk system as a component M′ = (S′, s′0, αM′) over the signature (Out′ × )In′

with S′ = {s′0, s′1, s′2} is the state space, In′ = {request, pedestrianOk, abs} is the set of inputs and
Out′ = {stopLight, lightOk, pedestrianGreen, pedestrianRed, abs} is the set of outputs. The tran-
sition function:

αM′ : S′ −→ ({stopLight, lightOk, pedestrianGreen, pedestrianRed, abs} × S′){request,pedestrianOk,abs}

is defined as follows: 

αM′(s′0)(request) = (stopLight, s′0)

αM′(s′0)(pedestrianOk) = (pedestrianGreen, s′1)

αM′(s′1)(abs) = (pedestrianRed, s′2)

αM′(s′2)(abs) = (lightOk, s′0)

The pedestrian crossing model S can be seen as a composition of the crosswalk component M′ and
the traffic light component M, in which the "stopLight" action, the "pedestrianOk" action and the
"lightOk" action are hidden as one can see in Figure V.24. The behaviour of S is then obtained as
the synchronous parallel composition �((M′,M)) of the individual componentsM′ andM. Output
actions of one component that are in the input set actions of another component are synchronized i.e. the
"stopLight", "pedestrianOk" and "lightOk" actions.



106 Chapter V Integration of components

s′0

s′1

s′2

s′3

pedestrianOk
| pedestrianGreen

request|stopLight

abs|pedestrianRed

abs|lightOk

s0

s1

s2

s3

s4
stoplight|lightGreen

abs|lightGreen

abs|lightOrange

abs|lightRed

abs|pedestrianOk

lightOk|abs

stopLight

PedestrianOk

lightOk

pedestrianRed

request

pedestrianGreen

lightGreen

lightOrange

lightRed

Figure V.24 – Pedestrian crossing modeling

Applying then the synchronous parallel composition � defined in Section 2.5 onM′ andM leads to a
component over the signature

{PedestrianRed, PedestrianGreen, lightGreen, lightRed, lightOrange, abs} × ){request,abs}

whose transition function is illustrated in Figure V.25.

s0 s1

s2s3s4

s5
request|lightGreen

abs|lightGreen

abs|lightOrange

abs|lightRedabs|pedestrianGreen

abs|pedestrianRed

abs|abs

Figure V.25 – �(M′,M)

Example 3.4 (Level crossing) We consider a simplified model of a level crossing. This model mainly
consists of three parts: a single track railroad, a train, three detectors: "approach", "entry" and "exit" to
detect the position of the train during its crossing of the road and the barrier. Figure V.26 illustrates a
typical view of these elements.

The behaviour of the global system of the level crossing is the following: when the "approach" detector
detects an approaching train, it sends a signal to the barrier in order to go down. Once the train enters
into the security zone, the "entry" detector detects the presence of the train and then sends a signal to the
controller. Finally, once the train is crossed the railroad, the "exit" detector detects the train and sends a



3 - Systems and compositionality 107

Figure V.26 – Level crossing

signal to the barrier in order to go back up. The model considered here does not take into consideration
the errors produced during both the barrier raising and lowering in order to avoid any complications. It
focuses only on safety properties such as "there is a train in the security zone while the barrier is not
completely closed".

The system of the level crossing as it is explained above, is then built from two basic components:

A controller C that produces a signal "close" when a train approaches, a signal "entry" when a train
enters into the security zone and a signal "open" when a train exits the railroad. Both "close" and "open"
signals are supposed to be submitted to the barrier. The controller is supposed to raise an alarm if there is
a train in the security zone and the barrier is not completely closed.
In our framework, C is specified as the coalgebra C = ({in, out, preparing, alarm, safe}, out, αC) over
the signature

({close, open, alarm, abs} × ){approach,exit,entry,closed}

where αC : {in, out, preparing, alarm, safe} × {approach, exit, entry, closed} −→

({close, open, alarm, abs} × {in, out, preparing, alarm, safe})

is defined as follows: 

αC(out)(approach) = (close, preparing)

αC(preparing)(closed) = (abs, safe)

αC(preparing)(entry) = (alarm, alarm)

αC(safe)(entry) = (abs, in)

αC(in)(exit) = (open, out)

Figure V.27 illustrates graphically the behaviour of the controller.

A barrier system B that behaves as follows: when it receives the "close" signal from C, it begins to lower
and when it receives the "open" signal from C, it begins to rise. We assume that the opening of the barrier
is done instantaneously to make the example representation simple.
In our framework, B is specified as the coalgebra B = ({up, closing, down}, up, αB) over the signature
({closed, abs} × ){close,open,abs} where



108 Chapter V Integration of components

out

preparing

safealarm

in

approach|close closed|abs

entry|alarm

entry|absexit|open

approach

entry

exit

closed

close

alarm

open

Figure V.27 – Controller system C

αB : {up, closing, down} × {close, open, abs} −→ ({closed, abs} × {up, closing, down})

is defined as follows: 
αB(up)(close) = (abs, closing)

αB(closing)(abs) = (closed, down)

αB(down)(open) = (abs, up)

Figure V.28 illustrates graphically the behaviour of B.

up

closing

down

close|abs abs|closed

open|abs

close

open

closed

opened

Figure V.28 – Barrier system B

Now, the model S of the level crossing system is given as a synchronous parallel composition defined in
Section 2.5 of C and B. This leads to a new component

S = �(C,B) = ({s0, s1, s2, s3, s4}, s0, αS )

over the signature:
({alarm, abs} × ){approach,entry,exit,abs}

where
αS : {s0, s1, s2, s3, s4} × {approach, entry, exit, abs} −→
({alarm, abs} × {s0, s1, s2, s3, s4})



3 - Systems and compositionality 109

is defined as follows: 

αS (s0)(approach) = (abs, s1)

αS (s1)(entry) = (alarm, s3)

αS (s1)(abs) = {abs, s2)

αS (s2)(entry) = (abs, s4)

αS (s4)(exit) = (abs, s0)

s0

s1

s2
s3

s4

approach|abs abs|abs

entry|alarm

entry|absexit|abs

approach

entry

exit

alarm

Figure V.29 – Crossing level global model S

3.3 Compositionality

An important question we must address concerns compositionality: is the behaviour of a sys-
tem the composition of its components’ behaviours? In our framework, this will be expressed as
follows: let op be a complex operator of arity n, C1, . . . , Cn be n components and C = op(C1, . . . , Cn),
then

behC(init) = op(behC1(init1), . . . , behCn(initn)) (V.9)

where init (resp. initi, i = 1, . . . , n) is the initial state of C (resp. Ci) and op is the adaptation
of op on sets of transfer functions. Before establishing Equation V.9, we first need to define
complex operators op on behaviours. Components’ behaviours being sets of transfer functions,
op has to be defined on a set of transfer functions. Moreover, it has to respect the same induction
structure as op. We first have to adapt the cartesian product and the feedback on components’
behaviours.

Definition 3.2 (Cartesian product on behaviours ⊗ f )
Let H1 = T(Out1 × )In1 and H2 = T(Out2 × )In2 be two signatures. Let Γ1 and Γ2 be two sets of
transfer functions over H1 and H2 respectively. Then, Γ1 ⊗ f Γ2 is the set:

Γ1 ⊗ f Γ2 = {F1 ×F2 | F1 : In1
ω −→ Out1

ω,F2 : In2
ω −→ Out2

ω}

It is obvious to prove that the cartesian product of two transfer functions is a transfer function.

Definition 3.3 (Relaxed feedback on transfer function) Let H = T(Out× )In be a signature and
I = ( f , πi, πo) be a feedback interface over H. Let F : Inω −→ Outω be a transfer function. Let us
define for every x ∈ Inω, the couple (x̂, yx̂) ∈ Inω ×Outω by induction on ω as follows:



110 Chapter V Integration of components

• x̂ = x(0) and yx̂(0) = F (x)(0)

• ∀n, 0 < n < ω, x̂(n) = f (x(n), yx̂(n− 1)), yx̂(n) = F (x)(n) where x ∈ Inω is any dataflow
such that ∀j ≤ n, x(j) = x̂(j).

Then,←↩I f (F ) : In′ω −→ Out′ω is the mapping that associates to x′ ∈ In′ω, y′ ∈ Out′ω such that there
exists x ∈ Inω satisfying:

∀i < ω, x′(i) = πi(x̂(i)) and y′(i) = πo(yx̂(i))

Let us observe that Definition 3.3 is noticeably similar to Definition 1.3 except that the choice
of yx̂(n) is unique in Definition 3.3 because directly giving by the transfer function F .

←↩I f (F ) needs some conditions on projections πi and πo to be a transfer function. Indeed, πi
and πo are surjective but by no means they are supposed to be injective. This can then question
the causality conditions of←↩I f (F ). Imposing πi and πo to be injective would lead to condition
which is too strong (πi and πo would then be bijective) and which is seldom satisfied (e.g.
the sequential composition defined in Section 2.1). Here, we propose a weaker condition that is
satisfied by most of the integration operators based on feedback (all those defined in this thesis).

Assumption 1: ∀x1, x2 ∈ Inω, ∀j, j ≤ n, πi(x1(j)) = πi(x2(j)) =⇒
πo(F (x1)(0)) = πo(F (x2)(0)) if j = 0

πo(F ( f (x1(j),F (x̂1)(j− 1))) = πo(F ( f (x2(j),F (x̂2)(j− 1))) otherwise

Proposition 3.1 ←↩I f (F ) : In′ω −→ Out′ω is a transfer function.

Proof Let F : Inω −→ Outω be a transfer function over H and ←↩I f (F ) : In′ω −→ Out′ω be the
function defined in Definition 3.3. Let x′1, x′2 ∈ In′ω be two inputs dataflows for ←↩I f (F ) and let us
prove that if for every n, 0 ≤ n ≤ ω, x′1(n) = x′2(n), then←↩I f (F )(x′1(n)) =←↩I f (F )(x′2(n)).

By induction over ω:

• Basic Step: n = 0

By definition, x′1, x′2 ∈ In′ω, then there exists x1, x2 ∈ Inω such that x′1(0) = πi(x1(0)) and
x′2(0) = πi(x2(0)), and ←↩I f (F )(x′1(0)) = πo(F (x1(0))). By hypothesis, since x′1(0) =

πi(x1(0)) and x′2(0) = πi(x2(0)), then πi(x1(0)) = πi(x2(0)). Then, by Assumption 1, we
have that πo(F (x1)(0)) = πo(F (x2)(0)). Hence,←↩I f (F )(x′1(0)) = πo(F (x2(0))) which by
definition equals to←↩I f (F )(x′2(0)).

• Induction Step:

By definition of ←↩I f (F )(x′1(n + 1)), we know there exists (x̂1,F (x̂1)) ∈ Inω × Outω such
that ∀k, 1 ≤ k ≤ n + 1, x′1(k) = πi(x̂1(k)) and ←↩I f (F )(x′1(k)) = πo(F (x̂1)(k)) where
x̂1(k) = f (x(k),F (x̂1)(k− 1)).

By definition of ←↩I f (F )(x′2(n + 1)), we know there exists (x̂2,F (x̂2)) ∈ Inω × Outω such
that ∀k, 1 ≤ k ≤ n + 1, x′2(k) = πi(x̂2(k)) and ←↩I f (F )(x′2(k)) = πo(F (x̂2)(k)) where
x̂2(k) = f (x(k),F (x̂2)(k− 1)).



3 - Systems and compositionality 111

By hypothesis, we know that ∀k, 0 ≤ k ≤ n, x′1(k) = x′2(k) =⇒←↩I f (F )(x′1(k)) =←↩I f

(F )(x′2(k)). It remains to prove that if x′1(n+ 1) = x′2(n+ 1), then←↩I f (F )(x′1(n+ 1)) =←↩I f

(F )(x′2(n + 1)).

Since ∀k, 1 ≤ k ≤ n + 1, x′1(k) = πi(x̂1(k)), x′2(k) = πi(x̂2(k)) and x′1(k) = x′2(k), then by
Assumption 1, ∀k, 1 ≤ k ≤ n + 1. πo(F (x̂1)(n + 1)) = πo(F (x̂2)(n + 1)). This last result
then yield←↩I f (F )(x′1(n + 1)) =←↩I f (F )(x′2(n + 1)).

End

Definition 3.4 (Well-formed feedback composition for transfer function) Let I = ( f , πi, πo) be
a feedback interface over a signature H. Let F : Inω −→ Outω be a transfer function. The synchronous
feedback composition of F over I is well-formed if, and only if

∀x ∈ Inω, (∀n < ω, x̂(n) = f (x(n),F (x)(n))) =⇒ F (x̂) = F (x)

Definition 3.5 (Synchronous feedback for transfer functions) Let I = ( f , πi, πo) be a feedback
interface over a signature H. Let F : Inω −→ Outω be a transfer function. 	I f (F ) : In′ω −→ Out′ω

is the mapping that associates to x′ ∈ In′ω, y′ ∈ Out′ω such that there exists x ∈ Inω satisfying

∀i < ω, x′(i) = πi( f (x(i),F (x)(i))) and y′(i) = πo(F ( f (x(i),F (x)(i))))

Similarly to←↩I f (F ), 	I f (F ) is a transfer function if the following assumption is satisfied by
F .

Assumption 2: ∀x1, x2 ∈ Inω, ∀j, j ≤ n,

πi(x1(j)) = πi(x2(j)) =⇒ πo(F ( f (x1(j),F (x1)(j))) = πo(F ( f (x2(j),F (x2)(j)))

Proposition 3.2 	I f is a transfer function.

Proof The technical proof is noticeably similar to the proof given for←↩I f .
End

Let us note that both Assumption 1 and Assumption 2 are satisfied by all operators defined
in this thesis that use the feedback operator. Indeed, if we take the sequential operator, we can
see that these assumptions are verified according to the underlying feedback. This is also true
for all other complex operators defined by the sequential operator.

Definition 3.6 (Feedback on behviours) Let Γ be a set of transfer functions over a signature H =

T(Out× )In. Then, �Γ is the set of transfer functions:

�Γ = {�F | F : Inω −→ Outω}

where � is either←↩I f or 	I f .

Complex operators can be easily extended to behaviours by replacing in Definition 2.1, the
symbols ⊗,←↩I and 	I by ⊗ f ,←↩I f and 	I f , respectively. In the following, given a complex
operator on components we will note op its equivalent on behaviours.

Similarly, Definition 3.1 can be easily extended to complex operators on behaviours by re-
placing each component Ci by a set of transfer functions Γi, and ⊗,←↩I and	I by ⊗ f ,←↩I f and
	I f , respectively.



112 Chapter V Integration of components

Theorm 3.1 (Compositionality) Let op be a complex operator on components of arity n. Let C1, . . . , Cn

be n components. If C = op(C1, . . . , Cn), then

behC(init) = op(behC1(init1), . . . , behCn(initn))

Proof In order to prove this theorem, we need to prove the following lemmas:

Lemma 3.1 Let C1 and C2 be two components over H1 = T(Out1 × )In1 and H2 = T(Out2 × )In2 .
Let C = ⊗(C1, C2) be the product component over H = T((Out1 ×Out2)× )In1×In2 . Then we have:

behC1⊗C2((init1, init2)) = behC1(init1)⊗ f behC2(init2)

Proof By definition, behC1⊗C2((init1, init2)) contains all the transfer functions F : (In1 × In2)
ω −→

(Out1 ×Out2)
ω that associates to every (x1, x2) ∈ In1 × In2, a (y1, y2) ∈ Out1 ×Out2 such that there

exists an infinite sequence ((o11, o21), (s11, s21)), · · · ∈ (Out1 ×Out2)× (S1 × S2) satisfying:

∀j ≥ 1, ((o1j, o2j), (s1j, s2j)) ∈ η′(Out1×Out2)×(S1×S2)
(α((s1j−1, s2j−1))(x1(j− 1), x2(j− 1)))

with (s10, s20) = (init1, init2), and for every k < ω, yi(k) = oi for i = 1, 2.
Hence, for i = 1, 2, there exists an infinite sequence (oi1, si1), · · · ∈ Outi × Si satisfying

∀j ≥ 1, (oij, sij) ∈ η′Outi×Si
(αi(sij−1)(xi(j− 1)))

We can then define a transfer function Fi : xi 7→ yi. Hence F = F1 ⊗ f F2 and then

F ∈ behC1(init1)⊗ f behC2(init2)

By following the same reasoning, we can show that given

Fi ∈ behCi (initi),F1 ⊗ f F2 ∈ behC1⊗C2((init1, init2))

End

Lemma 3.2 Let C ′ be a component over H = T(Out′ × )In′ and C =←↩I (C ′) be a component over
H = T(Out × )In. Let I = ( f , πi, πo) where f : In′ × Out′ −→ In′, πi : In′ −→ In and πo :
Out′ −→ Out be a feedback interface. Then we have:

beh←↩I (C ′)(init) =←↩I f (behC ′(init′))

where init is the initial state of C =←↩I(C ′).

Proof Le F ∈ beh←↩I (C ′)(init). By definition, F associates to x′ ∈ Inω, y′ ∈ Outω (when such y′

exists) such that there exists x ∈ In′ω and (x̂, yx̂) ∈ In′ω ×Out′ω satisfying

∀i < ω, x′(i) = πi(x̂(i)) and y′(i) = πo(yx̂(i))

By definition of x̂ and yx̂, there exists an infinite sequence (init′, s′1, . . . , s′k, . . . ) ∈ S′ such that:

• x̂ = x(0) and yx̂(0) ∈ η′Out′×S′(α
′(init′)(x̂(0))



3 - Systems and compositionality 113

• ∀n, 0 < n < ω, x̂(n) = f (x(n), yx̂(n− 1)), yx̂(n) ∈ η′Out′×S′(α
′(s′n)(x̂(n))).

Hence, we can extract a transfer function F ′ that associates to x̂, yx̂ such that←↩I f (F
′) = F , and then

←↩I f (F
′) ∈←↩I f (behC ′(init′)).

To prove the other inclusion, we can follow the same reasoning.
End

Lemma 3.3 Let C ′ be a component over H = T(Out′× )In′ and C =	I(C ′) be a component over H =

T(Out× )In. Let I = ( f , πi, πo) where f : In′ ×Out′ −→ In′, πi : In′ −→ In and πo : Out′ −→ Out
be a feedback interface. Then we have:

beh	I (C ′)(init) =	I f (behC ′(init′))

where init is the initial state of C =	I(C ′).

Proof The technical proof is noticeably similar to the proof given for←↩I .
End

Now, Theorem 3.1 is proven by induction on the structure of op as follows:

• Basic Step: op is of the form . Its equivalent for sets of transfer functions is also defined by
(Γ) = Γ. The conclusion is then obvious.

• Induction Step: Three cases have to be considered

– op = ⊗(op1, op2) with arity of op1 is n1, arity of op2 is n2 and n1 + n2 = n

By induction hypothesis, we have:

(1) behop1(C1,...,Cn1 )
(init) = op1(behC1(init1), . . . , behCn1

(initn1)) where init is the initial
state of op1(C1, . . . , Cn1).

(2) behop2(Cn1+1,...,Cn)(init′) = op2(behCn1+1(initn1+1), . . . , behCn(initn)) where init′ is
the initial state of op2(Cn1+1, . . . , Cn).

and by the definition of both op1 and op2, we have

(3) op2(Cn1+1, . . . , Cn) and op2(C ′n1+1, . . . , C ′n) are components.

Then, ((1) + (2) + (3) + Lemma 3.1 implies that
behop1(C1,...,Cn1 )⊗op2(Cn1+1,...,Cn)((init, init′)) =

op1(behC1(init1), . . . , behCn1+1(initn1))⊗ f op2(behCn1+1(initn1+1), . . . , behCn(initn))

– op is of the form←↩I(op′) and is of arity n.

Let C1, . . . , Cn be n components such that C ′ = op′(C1, . . . , Cn). By induction hypothesis,
behC ′(init′) = op′(behC1(init1), . . . , behCn(initn)). It remains to prove that

beh←↩I (C ′)(init) =←↩I f (behC ′(init′))

where init is the initial state of C =←↩I(C ′). This last point is naturally proved by Lemma 3.2.

– op is of the form 	I(op′) and is of arity n.

Let C1, . . . , Cn be n components such that C ′ = op′(C1, . . . , Cn). By induction hypothesis,
behC ′(init′) = op′(behC1(init1), . . . , behCn(initn)). It remains to prove that

beh	I (C ′)(init) =	I f (behC ′(init′))

where init is the initial state of C =	I(C ′). This last point is naturally proved by Lemma 3.3.

End



114 Chapter V Integration of components

4 Related works

In this section, we present a brief overview of contributions which are technically close to our
approach, by discussing the difference between the problematics addressed by those contribu-
tions and those addressed by our approach. There are several coalgebraic works in the literature
which regard the combination of components using some sort of integration mechanism. The
closet to our work is the set of integration operators proposed by Barbosa in [9, 32]. Four com-
ponent integration operators have been proposed to reason about component-based designs:
pipeline "series" operator, external choice operator, parallel composition and concurrent oper-
ator. These operators are defined as special functors in some bicategory of components. The
pipeline operator is similar to our synchronous sequential operator Br. The external choice
operator corresponds to a composition where both components C1 and C2 are executed inde-
pendently, depending on the input submitted to the integrated component: when interacting
with the composed system, the environment will be allowed to choose either C1 or C2 inputs,
but not both. Input then triggers the corresponding component (i.e. C1 or C2), producing the
associated output. This operator is then similar to our synchronous product ~ when the inter-
section of input sets In1 and In2 is the empty set. The parallel composition is embodied in the
cartesian product, and finally the concurrent operator is similar to the operator defined in Sec-
tion 2.4. Thus, Barbosa’s operators can be all deduced from our two basic operators by choosing
the suitable and the minimal combination of them. In this setting, our approach offers advan-
tages relative to [9, 32], that is it makes larger systems as a composition of only two operators,
rather than as a combination of a set of separated operators. This makes it easier to reason about
system functionalities in the sense that every correct property under these basic operators is also
a correct property under other complex operators. This yields general theorems that are true of
all operators defined in our frameworks, and thus it is not required to be re-proved every time
for a new operator described as a combination of our basic operators: the proofs of results done
on our basic operators are made once and for all.

Meng in [89] redefined Barbosa’s operators to combine two components C1 and C2 over the
signatures (Out1 × T(Out2 × )In) and (Out′1 × T′(Out′2 × )In′) respectively. Hence, the differ-
ence between Meng’s and Barbosa’s work is the form of the functor over which components are
defined, and the possibility of combining components with different computational models (i.e.
T and T′), rather than using a single monad.

In this chapter, we have also shown how to define larger systems by composing subsystems
from two basic integration operators: product and feedback. This led us to inductively define
a set of complex operators (see Definition 2.1), the semantics of which are partial functors on
categories of components. This part can then be compared to works in [90, 91]. Indeed, from a
set of complex operators we can easily generate an algebraic signature that can be seen as an FP-
theory L over a basic set of sorts S ⊆ Set× Set where for (In, Out) ∈ S, In and Out denote input
and output sets, respectively, and operations are complex operators (a monad T is supposed
identical for every couple (In, Out) in the FP-theory L). Outer models can then be defined along
the functor C : L −→ Cat that associates to any couple (In, Out) the category Comp(H) with
H = T(Out× )In and to any operator the partial functor defined in Definition 2.1. Finally, inner
models are defined by the natural transformation X : 1 =⇒ C where 1 is the constant functor
that associates to any S ∈ L the trivial object category 1, which to any couple (In, Out) associates
the final object in Comp(H) and to any complex operator op, the mapping on behaviours noted
[[op]] in [90, 91] that contains op semantics on both components and transfer functions.

The difference between our works and those mentioned above is that we have defined in-
tegration operations by composing two basic operators: product and feedback. The objective
was then to demonstrate a set of general properties on these integration operators such as the



4 - Related works 115

results of compositionality (see Theorem 3.1), by showing that these properties are valid for the
product and feedback and are preserved by composition.

Hence, Theorem 3.1 is similar to Theorem 4.7 in [91] at least in these goals to establish a
generic result of compositionality independent of a given integration operator.

There is a long list of other works addressing components composition without involving
coalgebraic denotations. It is difficult to collect them all; however, the common basis of most of
them is that the system is described as a structural decomposition into components (or subsys-
tems) by separating the notion of component behaviour and that of interaction (or communica-
tion) between components, which is considered essential to overcome system design complex-
ity [2, 3, 92]. Approaches based on so-called model of computations, such as [92, 93, 94, 95, 96, 97],
have been proposed to connect all components of the system globally. Roughly speaking, a
model of computation can be seen as a set of primitive rules that govern the interactions be-
tween the components of a system. Such rules should explicitly encompass (1) the global be-
haviour of a system during its execution (e.g. cyclic, reactive, concurrent or sequential way);
(2) the communication protocol used to allow the system to interact with its environment (e.g.
rendezvous, message passing, exchange events) and (3) the data format that can be used dur-
ing communication (e.g. events, queries, flux). These approaches suffer from the disadvantage
that the semantics of the model of computations used and the interactions between them are
given implicitly, which makes it hard or even impossible to incorporate, beyond modeling and
simulation, other techniques such as testing and verification.

Other approaches have been proposed for describing component behaviour and their co-
ordinations, such as [98, 99, 100]. Reo [98] is a coordination language for the composition of
distributed software components and services based on connectors. Primitive connectors such
as synchronous channels or FIFO queues are structured to build complex component connec-
tors which exhibit complex behaviours. A number of formal models describing the behaviour
of Reo connectors and their composition exists, for instance models based on constraint au-
tomata [101] or models based on coalgebraic denotations [102]. Thus, algebraic reasoning and
simulation are supported for analysis. Reo does not focus on component behaviour, it presents
components only by their interfaces. In this way, Reo’s components can be seen as transfer
functions taking input data at given moments and providing its associated output, and Reo’s
connectors as relations between a couple of an input data stream and a time stream (Inω, TSω)

and a couple of an output data stream and a time stream (Outω, TSω). Thereby, associating
time to component dataflows makes Reo’s connectors rich, where by imposing suitable tim-
ing constraints on them, many styles of communication can be obtained such as synchronous,
asynchronous, bounded, unbounded, lossy, lossless, etc. Thus, Reo’s connector can be thought
of as the sequential operator defined in Section 2.1, which does not only make components con-
nection synchronously, but also encompasses other connection aspects such as asynchronous,
unbounded, etc. Hence, by extending In and Out of the13 signature T(Out× )In with a complex
data structure, Reo’s connectors would be embodied in our framework.

[99, 100] provides a formal composition framework for describing based-component sys-
tems with heterogeneous interactions. This framework is known as BIP: B stands for Behaviour,
I for Interaction and P for Priority. Thus, as its name indicates, a BIP model (or component) is
composed of three layers: a layer defines the behaviour of the component encoded as transition
systems extended with variables, a layer defines the connectors (i.e. the interactions) between
components executed via communication ports and a layer defines priority rules which reduce
non-determinism between interactions. BIP’s models can be composed to yield larger mod-
els. This is done using a binary composition operator on components which is supposed to

13Extension of the signature T(Out× )In over which components are defined with data structure is a part of our
future work.



116 Chapter V Integration of components

compose layers separately. This means that when composing two components C1 and C2, their
corresponding layers are composed indifferently and separately: C1’s behaviour is composed
with C2’s, C1’s interactions are composed with C2’s, and C1’s priority rules are composed with
C2’s. Furthermore, BIP is able to ensure correctness-by-construction for essential system prop-
erties such as mutual exclusion, deadlock freedom and progress. It also enables formal verifi-
cation. Such a representation of components and connectors allows BIP to provide multitude
heterogeneous interactions such as rendezvous and broadcast communication mechanisms. We
believe that these styles of communications would be described in our framework, by extending
the component signature T(Out× )In with complex data structure (for instance, rendez-vous
style can be embodied in sequential communication, broadcast in sequential following by syn-
chronous product).

5 Conclusion

In this chapter, we have proposed a generic framework for modeling complex modern systems
viewed as state-based systems. We have shown how a basic component (see Chapter IV, Def-
inition 1.1) can be combined with another by means of some integration operators to yield a
bigger, more complicated component. We have then defined two generic integration operators
for combining the behaviour of components: an extended version of the well-known cartesian
product, and the feedback operator. The feedback operator relies on three mappings: a map-
ping f to specify how components are linked and which parts of their interfaces are involved in
the composition process, and two mappings πi and πo that allow us to hide inputs and outputs
involved in the feedback composition process and thus help both encapsulation and compo-
sitionality. We have shown that other integration operators such as the sequential operator,
the double sequential operator, the synchronous product, the concurrent operator and the syn-
chronous parallel composition operator can be considered as compositions of these two basic
operators by a suitable choice of f , πi and πo. In this setting, we can see both the cartesian prod-
uct and the feedback operator as two patterns from which other integration operators can be
deduced as sequences of composition patterns. These patterns can also be used to build larger
patterns. Our two basic operators are then minimal operators used to derive operators repre-
senting an interaction between components by choosing a suitable and a minimal combination.
Such a combination is given according to the semantic that we want to associate to the integra-
tion operator of interest i.e. how the components communicate and share their actions. Hence,
the objective is to demonstrate a set of general properties on these integration operators such
as the results of compositionality, by showing that these properties are valid for the product
and the feedback and are preserved by composition. Thereby, every correct property under the
basic operators is also a correct property under complex operators.



Part III

Validation of component-based
systems by testing





119

This part provides the second main contribution of this thesis. It presents a formal compo-
sitional theory for testing complex-software systems viewed as component-based systems. Our
approach in the first part was to define a generic formalism dedicated to modeling systems,
generally state-based formalisms. The work proposed here can then be seen as a proposal for a
generic theory of conformance testing. It intends to contribute to the following topics:

• The development of a conformance testing approach enabling us to ensure correctness of
the components defined in Chapter IV. This approach is mainly inspired from the theory
of conformance testing developed by A. Touil and al. in [45, 53].

• The definition of a compositional testing framework enabling us to ensure the correctness
of systems obtained as an assembling of a set of components, as was shown in Chapter V.
The underlying idea consists in establishing correctness of the global system by using
correctness of each component.

• The definition of a framework enabling us to strengthen the correctness of each compo-
nent involved in a global system, by choosing suitable test purposes for them. The under-
lying idea is to use a projection mechanism, as in [49], to identify from any trace tr of the
global system, the trace of any component involved in tr. These projected traces can be
then seen as test cases that should be tested on individual components.

This part consists of three chapters. The first one presents an overview of the conformance
testing theory. The second one introduces our conformance testing theory allowing us to test
components separately. The third one is devoted to defining our compositional testing approach
based on projection mechanisms.



120



Chapter VI

Conformance testing theory: a
general overview

1 Formal Method in Conformance Testing . . . . . . . . . . . . . . . . . . . . . . 122

1.1 General principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

1.2 The meaning of conformance . . . . . . . . . . . . . . . . . . . . . . . . . 123

1.3 Formal framework for conformance testing . . . . . . . . . . . . . . . . . 124

Conformance testing [28, 27] is a technique for checking the functional correctness of an im-
plementation with respect to its specification by means of experiments on the implementation.
It consists in deriving test cases algorithmically from a system specification, executing them
on the real system and finally making sure that the latter behaves correctly by comparing its
outputs with those required in the specification.

A common methodology and framework for the specification and execution of conformance
testing for implementations of standard communication protocols such as ISO protocols, ISDN
protocols, etc. was proposed by the International Organization for Standardization (ISO). This
methodology is known as the international standard IS-9646: "Conformance Testing Methodol-
ogy and Framework" [50, 51]. The goal of the standard IS-9646 originally was to unify the
process of developing methods for conformance testing between protocols or open systems in-
terconnection (OSI) and their specifications. But, it has rapidly turned out that this standard
can also be suitable to test reactive systems [103, 104]. It is consequently now considered as the
basis of conformance testing where it allows us to define how to specify conformance tests and
to provide guidance to developers of test systems.

Nevertheless, the standard IS-9646 is limited in practice to automatized testing due to the ab-
sence of a formal description of its elements. Concepts are indeed written in natural language
which makes the automation of the conformance testing process hard. Hence, this limitation
activated the research and development of a formal framework, in which conformance testing
concepts, such as conformance requirement, conformance meaning, correctness of an imple-
mentation, test cases, test execution, verdict, etc. were defined in a formal setting. This led to
a joint project between ISO and the International Telecommunication Union (ITU) called "Formal
Methods in Conformance Testing" (FMCT) [52]. This project was the main topic of Tretmans’s
thesis [28] whose goal was the formalization of the testing methodology IS-9646, giving a formal
interpretation to most concepts in this standard.



122 Chapter VI Conformance testing theory: a general overview

In this chapter, we outline the main concepts of conformance testing which are introduced in
the standard IS-9646, and formalized by Tretmans in [28]. These concepts will be the theoretical
background of formal testing, which serves us as a fundamental basis to define our method for
automatic generation of abstract1 tests for generic components.

1 Formal Method in Conformance Testing

1.1 General principle

The process of conformance testing consists mainly of three phases that are shown in Fig-
ure VI.1.

Specification

System under Test

Suite of abstract tests

Suite of executable tests

Tester Verdicts

test generation

conforms to ?

abstract tests implementation

observes

stimulates

Figure VI.1 – Conformance testing process

The first phase is called test generation (or test derivation) and consists in deriving test cases
algorithmically from a formal description of the system’s behaviour using an algorithm of test
case generation. A collection of generated test cases is called a test suite. Test cases are indeed
not directly executable on the implementation because they are developed at some abstract level
independently of any implementation of the system. Thus, they are called abstract tests. The sec-
ond phase is known as test implementation and consists in transforming the generated test cases
during the first phase into concrete tests which therefore can be run on the real system. In fact,
a mechanism that maps abstract tests to concrete ones is needed. This mechanism is usually
referred to as an adapter. The last phase is called test execution and consists in executing concrete
tests on a particular implementation. The underlying idea is to provide test cases to the imple-
mentation and then observe its outputs which should be compared with the expected outputs
indicated in the test case. If the outputs do not match the specified outputs, a verdict Fail is
assigned to the test indicating non-conformance between the implementation and the specifica-
tion. Otherwise, a verdict Pass is assigned to the test indicating the conformance between the
implementation and the specification (only for the submitted test case).

1It is important to notice that all concepts introduced in this chapter are given at a generic level, i.e. they are inde-
pendent of any particular formal method.



1 - Formal Method in Conformance Testing 123

Note that in this thesis, we will not talk about the phase of test implementation. In fact,
as the test cases generated from the first phase are abstract, they must be then made concrete
before executing them on the implementation. As well, when a test is executed, outputs from
the implementation, being concrete, tests have to be transformed into abstract tests before com-
paring them with the expected outputs that are specified in the abstract test cases. We will not
focus on this phase, and as you will see in the next section, we consider implementations as
black boxes in order to deal with them by a formal reasoning.

1.2 The meaning of conformance

1.2.1 Specification model

A formal specification describes system behaviour using a specialized description formalism. In
general, it is a formal representation that captures the properties of a system precisely and un-
ambiguously.
In the following part of this section, to be independent of any specification formalism, we will
note SPECS the set of all possible formal specifications independently of any formalism, and
spec a specification belonging to SPECS.

1.2.2 Implementation model

An implementation under test generally consists of a combination of hardware and software. It
usually has physical connectors or interfaces to communicate with its environment. As previ-
ously, we will note the set of all possible implementations by IMPS and an implementation (for
instance Java program or hardware components) belonging to IMPS by iut. An implementation
is then a concrete executable object we cannot deal with it by a formal reasoning. The only
way to observe its behaviour is to interact via its interfaces, submitting inputs and observing
outputs. Hence, a formal description for such an implementation is needed to build a confor-
mance testing theory whose aim is to check whether the behaviour of a real implementation
is correct with respect to a formal specification. Hence, every implementation iut ∈ IMPS has
to be modeled by a formal object miut called a model of iut. The universe of the models of all
implementations under test is denoted by MODS. Consequently, we have the following testing
hypothesis [105]:

∀iut ∈ IMPS, ∃miut ∈ MODS, ∀i ∈ In, Out(iut, i) = Out(miut, i)

where Out(iut, i) (respectively Out(miut, i)) is the output yielded by iut (respectively miut) for
the input i.

Note that it is not assumed that the model of an implementation is known, only its existence
is required.

1.2.3 Conformance relation

The theory of conformance testing defines the conformance of an implementation to a specifi-
cation thanks to conformance relations. The objective of these relations is to provide a way to
specify conformance of an implementation with its specification. Several kinds of relations have
been proposed according to both test purposes and application domains. For instance, models
described by specialized description languages such as LOTOS [106] or SDL [107], or those
directly described as operational formalisms such as finite state machine or labeled transition
systems have different implementation relations embodying the conformance.



124 Chapter VI Conformance testing theory: a general overview

The conformance is formally expressed as a relation between the class of implementations
IMPS and the class of specifications SPECS. This relation, the so-called implementation relation,
is denoted by imp ⊆ MODS× SPECS and expressed as follows:

An implementation iut ∈ IMPS is in conformance to a specification spec ∈ SPECS if the existing
model miut ∈ MODS of iut is imp-related to spec, i.e. iut conforms to spec iff miut imp spec.

A specification can have many implementations conforming to it and then many conforming
implementation models. The different relations between IMPS, MODS and SPECS are depicted
in Figure VI.2. For a specification spec ∈ SPECS and an implementation relation imp, one has
the set Iiut ⊆ IMPS of all implementations that can be modeled by models in Miut ⊆ MODS.
Therefore, Iiut represents the set of all implementations that implement the specification spec
correctly according to imp, and Miut represents the set of all models that conform to spec in
MODS. Thus, Miut is given by {m ∈ MODS | m imp spec}. Hence, an implementation iut ∈ IMPS
conforms to the specification spec ∈ SPECS if it is modeled by miut belonging to the set Miut,
and the model miut implements spec according to the implementation relation imp.

SPECS

spec

MODS
Miut

miut

IMPS
Iiut

iut

to be implemented in conformance modeled by

imp

Figure VI.2 – Relations between IMPS, MODS and SPECS

1.3 Formal framework for conformance testing

1.3.1 Test execution

The behaviour of an implementation under test iut ∈ IMPS is checked by means of test exper-
iments on it: we choose an appropriate input and submit it to the iut. Then, we observe the
reaction of the iut and compare it with the one expected in its specification spec ∈ SPECS. This
comparison gives rise to a verdict about the correctness of the concrete implementation iut with
respect to the specification spec. A specification of each such experiment is called a test case. The
set of all possible test cases is denoted by TESTS and a test case belonging to TESTS by tc.

When specifications are written in formal languages, test cases can then be generated au-
tomatically using algorithms for test case derivation from the specification. Given an imple-
mentation relation imp and an implementation under test iut ∈ IMPS, an algorithm of test case
generation then provides a set of test cases TC ⊆ TESTS for a specification spec ∈ SPECS of iut.
This process of derivation of tests is known as test case generation. An execution of a test case is
then the process of stimulating an implementation under test iut ∈ IMPS by:



1 - Formal Method in Conformance Testing 125

• executing the specified test events of a test case tc ∈ TESTS;

• observing the produced reactions from the given iut;

• generating a test verdict based on these reactions.

We define exec(tc, iut) as the concrete execution of a test case on a real implementation lead-
ing to a subset of observations. Now, to continue our formal reasoning, we need to formalize
exec(tc, iut), then we introduce the observation function:

obs : TESTS×MODS −→ P(OBS)

where OBS denotes the domain of all possible observations from the iut.
This function computes, for each test case tc ∈ TESTS and each concrete implementation

under test iut ∈ IMPS modeled by miut ∈ MODS, the observations in OBS that result from
executing tc on iut i.e. a subset of observations O ⊆ OBS. Hence, obs(tc, miut) models the
execution of test cases exec(tc, iut) formally.

Each observation obtained after a test execution is assigned to a verdict which may vary
depending on the test case tc. This gives rise to a function:

verdicttc : OBS −→ {Fail, Pass}

A Fail verdict means that a non-conformance between the implementation iut and its specifi-
cation spec is detected (the behaviour of the implementation observed by the tester is not the
one expected in the specification). A Pass verdict means that the implementation iut behaves in
conformance to the specification spec for the given observation i.e. for the executed test case.2

1.3.2 Test case properties

So far we have only seen how test cases are generated from specification and how they are
executed on implementations. But, we have not studied the coherence between both notions of
test cases execution and conformance applied to an implementation under test and its formal
specification. For this purpose, two properties have to be studied: correctness and completeness.

• Correctness: this property states that if an implementation iut is in conformance to a spec-
ification spec then it passes all generated tests.

• Completeness: this property states that if the implementation passes all generated test
cases, then it conforms to its specification.

Intuitively the correctness property is achievable for practical testing. It allows us to ensure
the conformance of an implementation with respect to its specification, but it may not be able
to detect implementations that are not in conformance to a specification. That is because some
non-conforming implementations may pass the set of test cases. On the contrary, the complete-
ness property allows us to exactly distinguish between all conformant and non-conformant
implementations. However since a test is not exhaustive, this means we cannot reach the set of
all tests generated from the specification, this property is only achievable in theory.

In order to formalize the property of correctness and completeness, we introduce the follow-
ing two notations:

2There exist another verdicts. For instance, the inconclusive verdict, noted Inconc, that is used if the implementation
iut behaves correctly according to the specification spec, but its responses do not satisfy the test purpose.



126 Chapter VI Conformance testing theory: a general overview

• passes: means that an implementation iut modeled by miut ∈ MODS passes a test case tc
successfully. This is formalized by:

iut passes tc =def verdict(obs(tc, miut)) = Pass

• f ails: means that an implementation iut modeled by miut ∈ MODS does not pass a test
case tc. This is a situation of failure.

iut f ails tc =def ¬(iut passes tc)

These notions can be extended to a set of test cases TC ⊆ TESTS as follows:

iut passes TC =def ∀tc ∈ TC, iut passes tc

iut f ails TC =def ∃tc ∈ TC, iut f ails tc

Definition 1.1 (Correctness and Completeness) Let iut ∈ IMPS be an implementation and spec ∈
SPECS be its specification. Let TC be a set of generated test cases. Then we have:

• TC is correct if:
∀iut ∈ IMPS, iut imp spec =⇒ iut passes TC

• TC is complete if:

∀iut ∈ IMPS, iut imp spec ⇐⇒ iut passes TC

The following table describes the required elements for conformance testing:



1 - Formal Method in Conformance Testing 127

Physic elements implementation iut ∈ IMPS

test case execution exec(tc, iut)

Formal elements specification spec ∈ SPECS

implementation model miut ∈ MODS

implementation relation imp ⊆ MODS× SPECS

test case tc ∈ TESTS

observations OBS

execution model of test case obs : TESTS×MODS −→ P(OBS)

verdict verdicttc : OBS −→ {Fail, Pass}

Assumptions test hypothesis miut models iut

obs(tc, miut) models exec(tc, iut)

Table VI.1 – Conformance testing elements



128 Chapter VI Conformance testing theory: a general overview



Chapter VII

Testing of components

1 Conformance relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

1.1 Specification model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

1.2 Implementation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

1.3 Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2 Finite computation tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

2.1 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

2.2 Unfolding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3 Test Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4 Test generation guided by test purposes . . . . . . . . . . . . . . . . . . . . . . 142

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2 Inferences rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5 Instantiating of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

In this chapter, we develop a formal theory of conformance testing which allows us to test
our components defined in the first part of this thesis. The work presented here is mainly in-
spired by the formal testing theory developed by A. Touil et al. in [45, 53]. In our conformance
testing theory, behaviours of specifications and implementations under test are considered as
coalgebras of the functor T(Out× )In presented in Chapter IV. The conformance relation we
consider is an adapted version of the well-known relation ioco proposed in [47], and that is de-
fined as a partial inclusion of implementation traces into specification ones. Our work uses the
notion of a test purpose as it was defined in [45, 53]. In [45, 53], a test purpose provides an
operative way to extract test cases by selecting from the specification model, described1 as an
IOSTS, the functionalities that we want to test. This is done by relying on a symbolic execution
technique. In our approach, since we do not handle data but just values in both In and Out, we
use a simple unfolding technique to define our test purposes instead of a symbolic execution
technique. Then, our test purposes are directly derived from specifications using unfolding and
marking algorithms, and look like labeled trees capturing all specification traces for a given
length. We also propose in this chapter a test case generation algorithm as in [45, 53]. The un-
derlying idea consists in choosing a possible input i and submitting it to the implementation

1 IOSTS stands for Input-Output Symbolic Transition system. It is a variant of IOLTS including and handling ex-
plicitly the data system [45, 53].



130 Chapter VII Testing of components

under test, and then observing the outputs produced from it and compare them with the possi-
ble outputs in the specification. Hence, the only way to observe the reaction of the system under
test is through sequences of simulations-observations. In other words, systems under test are
considered as black boxes. In this sense, we are in a testing framework similar to both [45, 53]
and [40, 108].

1 Conformance relation

In this section, we examine how we can define the conformance of the implementation of a
component to its specification. In order to compare the behaviour of the implementation to the
specification, we need to consider both as components over a same signature. However, the
behaviour of the implementation is unknown and can only be observed through its interface.
We therefore need a conformance relation between what we can observe on the implementation
and what the specification allows.

To define the conformance between the implementation iut and its specification spec, a for-
mal relation of conformance between iut and spec is classically given between the models of iut
and spec. However, the specification spec of a system is the formal description of its behaviour.
On the contrary, the implementation iut of a system is an executable component, which is con-
sidered as a black box [109, 110]. Hence, modeling iut requires some assumptions that we state
in the following.

1.1 Specification model

The conformance testing is a black-box test technique i.e. it is only based on a description
of system functionalities in terms of its inputs and outputs. Such a description does not make
reference to the internal structure of a system under test. It only contains the desired behaviours
that stand only for what the system should do, not how it is done. Then, the first step to define
conformance testing theory is to give a specification model of the system in which both its input
and output are well represented and the internal behaviour is not considered. Furthermore,
this specification model has to make clear the difference between the input and the output of
the system due to the fundamental role of this distinction in practical testing process [28, 38,
39, 46, 67]. Indeed, the inputs are the actions used by the tester to stimulate the system under
test while the outputs are the expected reactions observed after the stimulation. From this point
of view, our components defined over the signature T(Out× )In give answers to these testing
requirements where they explicitly differentiate input and output actions.

Definition 1.1 (Specification model) A specification of a system S is modeled as a component
spec = (S, init, α) over a signature T(Out× )In.

1.2 Implementation model

An implementation iut is commonly a reactive program intending to interact permanently with
its environment. During the test process, it is assumed that the source code of the implementa-
tion is not available and null knowledge about it is provided. That means it is considered a black
box [109, 110], whose internal structure cannot be directly accessed. We interact with it through
its interface, by providing inputs to stimulate it and observing its behaviour through its out-
puts. Then, to be able to treat the implementation iut, we make the following two assumptions
about it:



1 - Conformance relation 131

1. The implementation iut can be modeled as a coalgebra (S′, init′, α′) over the signature
T(Out′ × )In′ with In ⊆ In′ and Out ⊆ Out′ (In and Out are the input and output sets of
the specification respectively). This assumption is imposed to allow the specification spec
to accept all responses of the implementation.

We also denote by iut the coalgebra modeling the implementation to avoid any excessive
denotations;

2. The iut is input-enabled, i.e. at any state, it must produce answers for all inputs provided
by the environment.

The following definition formalizes these two assumptions:

Definition 1.2 (iut model) Let spec be a specification over T(Out × )In. A system under test or
implementation of spec is a component (S′, init′, α′) over the signature T(Out′ × )In′ where α′ is
considered as a total function:

∀(s′, i′) ∈ S′ × In′, ∃(o′, s′′) ∈ Out′ × S′ such that (o′, s′′) ∈ η′Out′×S′(α(s
′)(i′))

and In ⊆ In′ and Out ⊆ Out′.

1.3 Conformance

1.3.1 An overview

The notion of conformance is usually based on the comparison between the behaviour of a
specification and an implementation using a conformance relation. The goal of this relation is
to specify what the conformance of an implementation is to its specification. Several kinds of
relations have been proposed in the literature. They differ mainly in both the formalism used
to model system behaviour and the testing aspects considered. Let us informally review some
of them.

The original conformance testing relation proposed for finite state machines (FSM) is de-
fined as the testing equivalence of states whose goal is to determine the equivalence of two
machines [111]. Two state machines are said to be equivalent if they produce exactly the same
sequence of outputs when offered the same sequence of inputs. There is a list of other confor-
mance relations that can be found in the literature. The definitions of these relations depend
mainly on the underlying properties of the finite state machines we use. Table VII.1 reviews
some of them without going into details. For more detailed explanations, see [112, 113, 114, 115].

It turns out that the conformance relations to test state equivalence are too strong, in prac-
tice, for conformance testing. There is a number of common assumptions (e.g. specification is
strongly connected, minimized or complete) that are usually made in the literature to make test
processes at all possible [111, 65, 116, 117]. Test generation algorithms based on them are also
expensive in time and memory [65, 111, 118, 119, 120, 121], contrary to test cases generation tech-
niques for inclusion relations (e.g. reduction and quasi reduction relations) [112, 113, 114, 115].

The test relations proposed for labeled transition systems (LTS) are usually equivalence and
preorder relations relying on the notion of observable behaviours. Many works have been done
on establishing the relations between LTSs. The relation trace preorder ≤tr requires the inclusion
of sets of traces. That means an implementation iut may show only behaviour which is specified
in the specification. The testing preorder ≤te [122, 123] means that if the implementation iut
makes a trace which corresponds to a computation of iut after which no more action is possible,
then the specification spec has to make the same trace. The conf [124] is a variant of≤te in which



132 Chapter VII Testing of components

Relation Informal definition Properties

Equivalence ∼= equality of traces set complete deterministic, or
complete nondeterministic

Quasi Equiva-
lence w

for each input sequence of spec, spec
and iut produce the same output se-
quences

deterministic or
nondeterministic

Reduction ≤ trace inclusion complete nondeterministic

Quasi reduction� for each input sequence of spec, iut pro-
duces only output sequences of spec

nondeterministic

Table VII.1 – Examples of conformance relations

all possible observations (i.e. Σ∗) are restricted to only traces contained in the specification.
In other words, it requires that the implementation behaves according to a specification, but
allows behaviours on which the specification puts no constraint. The refusal preorder ≤r f [125]
is a variant of ≤tr. The main difference between them is that ≤r f is able to detect possible
deadlock states i.e. states from which the system cannot go further. This is done by extending
the definition of a labeled transition system with refusal transitions.

Testing methods for LTS models are based on symmetric communication between the sys-
tem and its environment. Both environment and system actions are indeed treated in the same
way. There is no notion of input or output. However, it turns out such a classification of ac-
tions into inputs and outputs leads to a closer link to testing process reality [28, 38, 39, 46, 67].
This is due to the fact that outputs (respectively inputs) have to be considered as actions that
are initiated by, and under control of the system (respectively that are initiated by, and under
control of the environment). That distinction between input and output actions then has a fun-
damental role in testing practice in which the tester chooses an input action i, provides it to the
implementation under test, and then observes output actions produced by the implementation
after i. We refer to the state of arts of the thesis [39, 126, 127] as well as to the articles [41, 128]
for further details.

Hence, most of the relations based on LTS have been extended to IOLTS models. Both the
testing preorder ≤te and the refusal preorder ≤r f were redefined to allow to take into account
inputs and outputs of systems [47, 129]. The con f relation was also adapted for the IOLTS mod-
els, and called iocon f [41, 47]. Indeed, the relation iocon f is similar to con f , but distinguishes
inputs from outputs, and restricts all possible observations to the traces of the specification. It
checks only whether a given implementation does what it should do, without regard to unspec-
ified behaviours. The implementation then has the freedom to do more that what is specified.
The relation ioco [41, 47] is similar to ioconf, but it uses suspension traces (i.e. traces generated
from suspension models whose quiescence 2 is specified) instead of proper traces (i.e. traces
generated from models whose quiescence is not handled) to check the conformance between iut
and spec. There are many other types of relations [68, 82, 130].

The relations conf, ioconf and ioco have received much attention by the community of for-
mal testing because they have shown their suitability for conformance testing and automatic
test derivation [41]. The reason is that the objective of conformance testing is mainly to check

2 The word "quiescence" is used to refer to blocking situations in states.



1 - Conformance relation 133

whether the implementation behaves as required by the specification i.e. to check if the imple-
mentation does what it should do. Hence, a conformance relation has to allow implementations
not only to do what is specified, but also to do more than what is specified (for instance, when
an annoyed user hits or kicks the coffee machine, or does other strange things that we are not
usually considered in the specification). This requirement of testing conformance is well satis-
fied by conf, ioconf and ioco contrary to other relations [68, 122, 123, 125, 130] that require testing
behaviours that are not in the specification i.e. the implementation does not have the freedom
to produce outputs for any input not considered in the specification.

Since we are dealing with components with input and output and quiescence is implicitly
defined in our component models, we choose ioco and extend it to fit our framework taking into
account that other relations previously presented could also have been defined in our frame-
work. There are several extensions to ioco according to both the transition system type and the
aspect considered to be tested. For instance, sioco for symbolic transition systems [44], sioco for
input-output symbolic transition systems [48], tioco for timed labeled transition systems [131],
cspio for CSP process algebra [132], dioco for distributed systems [133], uicoco for hybrid sys-
tem [134], etc.

1.3.2 Definition

We redefine the ioco conformance testing relation that we will call here cioco3 in terms of compo-
nents as defined in Chapter IV. We make some modifications to the original definition of ioco to
fit our component definition. That is, after each trace tr of a specification spec, instead of consid-
ering that the possible outputs of the corresponding implementation iut after executing tr on it
is a subset of the possible outputs of spec, we consider that the corresponding implementation
iut, after executing tr on it and then submitting any input i of the specification to it, does not
produce outputs that are not allowed by spec.

The formal definition of cioco uses the following definition:

Definition 1.3 (Out after (tr, i)) Let C be a component over T(Out× )In. Let tr be a finite trace of C
and i ∈ In. The set of the possible outputs for input i after executing tr on C is:

Out(C after (tr, i)) = {o | tr.〈i|o〉 ∈ Trace(C)}

Hence, the relation cioco is formally redefined in terms of coalgebras as follows:

Definition 1.4 (cioco) Let spec be the component over the signature T(Out× )In and iut be the com-
ponent over T(Out′ × )In′ such that iut satisfies the assumptions stated in Definition 1.2. cioco is
defined as follows:

iut cioco spec⇐⇒ ∀tr ∈ Trace(spec), ∀i ∈ In, Out(iut after (tr, i)) ⊆ Out(spec after (tr, i))

Example 1.1 Consider the specification spec of the coffee machine illustrated in Figure IV.1 and three
implementations under test iut1, iut2 and iut3 depicted in Figure VII.1a, Figure VII.1b and Figure VII.1c
respectively. Then, one has:

3c for component



134 Chapter VII Testing of components

• (iut1 cioco spec) as after executing any finite trace of spec on iut, the outputs of iut1 are included
into the outputs of spec, when any specified input of spec is submitted to iut. For instance, after
the finite trace tr = 〈coin|abs, coffee|served, coin|abs〉 of spec, for the "coffee" input, one has:

Out(iut1 after (tr, coffee)) = {served, refund}

⊆

Out(spec after (tr, coffee)) = {served, refund}

• ¬(iut2 cioco spec). This is because the output ”refund” from the state FAILED of iut2 after the
finite trace 〈coin|abs, coffee|refund〉 is not allowed by spec when iut2 receives the input "repair"
(see the red transition repair|refund), while the specification only allows the output abs:

Out(iut2 after (〈coin|abs, coffee|refund〉, repair)) = {refund}

*

Out(spec after (〈coin|abs, coffee|refund〉, repair)) = {abs}

• ¬(iut3 cioco spec). This is because the output abs of iut3 after the trace 〈coin|abs〉 is not allowed
by the specification spec when iut3 receives the input "coffee" (see the red transition coffee|abs):

Out(iut3 after (〈coin|abs〉, coffee)) = {served, refund, abs}

*

Out(spec after (〈coin|abs〉, coffee)) = {served, refund}

Our definition of the relation cioco is generic enough to encompass the different ioco relations
defined in formalisms instances of our framework. Let us show that for IOLTS formalism.
First of all, let us recall the formal definition of ioco in the context of IOLTS model:

Definition 1.5 (ioco) Let spec be an IOLTS and iut be an input complete IOLTS, where the alphabets
of iut and spec are compatible, i.e. Σ!

spec ⊆ Σ!
iut and Σ?

spec ⊆ Σ?
iut then:

iut ioco spec =def ∀tr ∈ Trace(spec), Out(iut after tr) ⊆ Out(spec after tr)

where given an IOLTSM = (S, init, Στ , Tr),

• Trace(M) =
{
(a0, . . . , an) | ∃(s0, . . . , sn+1) ∈ S with s0 = init and si

ai−→ si+1, i ≤ n
}

• Out(M after tr) is defined for σ ∈ Trace(M) by
{

o | σ.o ∈ Trace(M) and o ∈ Σ!
M
}

By using the transformation defined in Definition 1.3 of Chapter IV, we have the following
proposition:

Proposition 1.1 LetM1 andM2 be two suspension IOLTSs. Let φ(M1) and φ(M2) be the compo-
nents obtained after transformingM1 andM2 in our framework. Then, we have:

M1 iocoM2 iff φ(M1) cioco φ(M2)



1 - Conformance relation 135

STDBY READY

FAILED

coin |abs

coffee |served

coffee |refundrepair |abs

(a) Implementation iut1 in conformance to the specifica-
tion spec

STDBY READY

FAILED

coin |abs

coffee |served

coffee |refundrepair|refund

(b) Implementation iut2 not in conformance to the
specification spec

STDBY READY

FAILED

IDLE

coin |abs

coffee |served

coffee |refund

coffee |abs

repair |abs

(c) Implementation iut3 not in conformance to the specification
spec

Figure VII.1 – Illustration of cioco

Proof
=⇒
Let (M1 iocoM2), tr ∈ Trace(φ(M2)), i an input of φ(M2) and o ∈ Out(φ(M1) after (tr, i)) and
let us prove that o ∈ Out(φ(M2) after (tr, i)).
o ∈ Out(φ(M1) after (tr, i)) implies that tr.〈i|o〉 ∈ Trace(φ(M1)). By Corollary 2.1 (in Chapter IV),
we have that tr.〈i|o〉 ∈ φt(Trace(M1)). Then,

∃tr′.a ∈ Trace(M1) | tr.〈i|o〉 = φt(tr′).φt(a) (VII.1)

Similarly, tr ∈ Trace(φ(M2)) implies that tr′ ∈ Trace(M2).
Since M1 ioco M2, then a ∈ Out(M2 after tr′). That amounts to say tr′.a ∈ Trace(M2). Thus,
φt(tr′.a) ∈ φt(Trace(M2)). Hence, by Corollary 2.1 (in Chapter IV) and Equation VII.1, we can
conclude that tr.〈i|o〉 ∈ Trace(φ(M2)). Consequently, o ∈ Out(φ(M2) after (tr, i)).

⇐=
Let (φ(M1) cioco φ(M2)), tr ∈ Trace(M2) and o ∈ Out(M1 after tr) and let us prove that o ∈
Out(M2 after tr).
o ∈ Out(M1 after tr) implies that tr.o ∈ Trace(M1) and tr ∈ Trace(M2). Then, φt(tr).φt(o) ∈
φt(Trace(M1)) and φt(tr) ∈ φt(Trace(M2). By Corollary 2.1 (in Chapter IV), we have then that



136 Chapter VII Testing of components

φt(tr).〈abs?|o〉 ∈ φ(Trace(M1)) and φt(tr) ∈ Trace(φ(M2)). But we know by hypothesis that
(φ(M1) cioco φ(M2)), then o ∈ Out(φ(M2) after (φt(tr), abs?)). That implies φt(tr).〈abs?|o〉 ∈
Trace(φ(M2)). Then, by Corollary 2.1 (in Chapter IV) we have that φt(tr).〈abs?|o〉 ∈ φt(Trace(M2)).
Hence, by applying φ−1

t , tr.o〉 ∈ (Trace(M2)). Consequently, we have that o ∈ Out(M2 after tr).
End

2 Finite computation tree

A component C = (S, init, α) over the signature T(Out× )In can be unfolded into a tree. Intu-
itively, this tree contains all the information about the possible executions of the component C.
It will form the cornerstone of the definition of test purposes in Section 3.

2.1 Formal definition

In this subsection, we define the finite computation tree of a component C which captures all its
finite traces.

Definition 2.1 (C-paths) Let C = (S, s0, α) be a component over T(Out× )In. A C-path is defined
by two finite sequences of states and inputs (s0, . . . , sn) and (i0, . . . , in−1) such that:

∀j, 1 ≤ j ≤ n, sj ∈ η′Out×S
(
α(sj−1)(ij−1)

)
|2

Definition 2.2 (Finite computation tree of component) Let (S, s0, α) be a component over the sig-
nature T(Out× )In. The finite computation tree of depth n of C, noted FCT(C, n), is the coalgebra
(SFCT , s0

FCT , αFCT) defined by:

• SFCT is the whole set of C−paths

• s0
FCT is the initial C−path 〈s0, ()〉

• αFCT is the mapping which for every C−path 〈(s0, . . . , sn), (i0, . . . , in−1)〉 and every input i ∈ In
associates η′−1

Out×SFCT
(Γ) where Γ is the set:

Γ =
{(

o, 〈(s0, . . . , sn, s′), (i0, . . . , in−1, i)〉
)
| (o, s′) ∈ η′Out×S

(
α(sn)(i)

)}

In this definition, SFCT is the set of the nodes of the tree. s0
FCT is the root of the tree. Each node

is represented by the unique C-path 〈(s0, . . . , sn), (i0, . . . , in−1)〉 which leads to it from the root:

s0
i0−→ s1

i1−→ . . .
in−2−−→ sn−1

in−1−−→ sn

αFCT gives, for each node p and for each input i, the set of nodes Γ that can be reached from p
when the input i is submitted to the component.

Example 2.1 Figure VII.2 gives the finite computation tree of depth 4 of the coffee machineM whose
specification is shown in Figure IV.1.

It is easy to notice that a component C and its finite computation tree FCT(C) share the same
trace semantics i.e. Trace(C) = Trace(FCT(C)). It is therefore equivalent to study a component
or its finite computation tree in the context of our work.



2 - Finite computation tree 137

p0

p1

p2 p3 p4

p5 p6
p7

p8 p9 p10 p11 p12

p0 = 〈STDBY, ()〉
p1 = 〈(STDBY, READY), coin〉

p2 = 〈(STDBY, READY, FAILED), (coin, coffee)〉
p3 = 〈(STDBY, READY, STDBY), (coin, coffee)〉
p4 = 〈(STDBY, READY, FAILED), (coin, coffee)〉

p5 = 〈(STDBY, READY, FAILED, STDBY), (coin, coffee, repair)〉
p6 = 〈(STDBY, READY, STDBY, READY), (coin, coffee, coin)〉

p7 = 〈(STDBY, READY, FAILED, STDBY), (coin, coffee, repair)〉
p8 = 〈(STDBY, READY, FAILED, STDBY, READY), (coin, coffee, repair, coin)〉
p9 = 〈(STDBY, READY, STDBY, READY, STDBY), (coin, coffee, coin, coffee)〉

p10 = 〈(STDBY, READY, STDBY, READY, FAILED), (coin, coffee, coin, coffee)〉
p11 = 〈(STDBY, READY, STDBY, READY, FAILED), (coin, coffee, coin, coffee)〉
p12 = 〈(STDBY, READY, FAILED, STDBY, READY), (coin, coffee, repair, coin)〉

coin|abs

coffee|served
coffee|served

coffee|refund

repair|abs coin|abs repair|abs

coin|abs coffee|served
coffee|served

coffee|refund coin|abs

Figure VII.2 – Finite computation tree for the coffee machine

2.2 Unfolding algorithm

In this subsection, we show that Definition 2.2 is computable by showing how to build a tree
FCT(C) algorithmically that captures all the possible finite computation paths of the component
C = (S, s0, α) over the signature H = T(Out× )In. This tree can be thought of as a data structure
representing the component computations obtained after a finite unfolding of C. Starting from
the initial state s0 of C, a tree t containing all the elementary paths is built by running a depth-
first search (DFS) as well as a set H(C) containing the heads (i.e. the first explored state) of
all elementary circuits which exist in C. To be more accurate, we assign a unique name to each
explored state and we also maintain the original state in C for every explored state in H(C). The
FCT(C) is therefore built recursively by binding to t in every state in H(C), the tree obtained by
applying the depth-first search to its original state in C. This means that if the component has a
circuit, then its unfolding is an infinite tree. To prevent this algorithm from running indefinitely
(the unfolding contains infinitely many visits to each state), we can enrich it with the option
of specifying the maximum time to go through the circuit. Briefly, unfolding the component
using this algorithm gives rise to a tree that contains isomorphic subtrees, describing redundant



138 Chapter VII Testing of components

computations, and each state can be reached via a unique execution from the initial state. It
allows us to capture all possible behaviours of the component at once. If we need to examine
a subset of the behavior of the system, then we use a stopping (or coverage) criteria which
determines the maximum number of passes through each circuit of C.

Hence, our mechanism of unfolding can be described by two algorithms. The first one,
called Enumerate, is a simple depth-first search that gives rise, as results, to the tree containing
all the elementary paths of C, and the first explored state of every circuit existing in C. The
second algorithm, called Unfolding, allows one to construct recursively the entire computation
tree taking into account how many times we go through every circuit of C.

Algorithm 1: Enumerate(C, (S′, init′, α′), s, LS, HC, P)

while ∃i ∈ In, (o, s′) ∈ Out× S | (o, s′) ∈ η′(α(s)(i)) do
nb′ ← GiveNumber(s′);
Add(S′, nb′);
α′(init′)(i)← α′(init′)(i) ∪ η′−1({(o, nb′)});
if Color(s′) = W or R then

Push(P, s′);
ModifyColor(LS, s′, G);
Enumerate(C, (S′, nb′, α′), s′, LS, HC, P);

else Add(HC, (s′, nb′));

Pop (P);
ModifyColor(LS, s, R);
return ((S′, init′, α′), HC)

Proposition 2.1 Enumerate runs in Θ(mN) while Unfolding in Θ(mNnbn) with:

• m is the number of states of the component to be unfolded;

• N is the cardinality of the input set In;

• nb is the number of circuits detected in C;

• n is the number of passes of the algorithm through each circuit.

Proof
Enumerate: Let T(m) be the number of elementary operations4 necessary to enumerate all elementary
paths of a component C over T(Out× )In whose state number is m. We can easily see that Enumerate
satisfies the following recurrence:

T(m) =

 3 + 8× N i f m = 1

3 + 8× N + T(m− 1) otherwise

To guess at a solution, let’s try unrolling the recurrence, by substituting it into itself as follows:

T(m) = T(m− 1) + 3 + 8× N

T(m− 1) = T(m− 2) + 3 + 8× N

...

T(m− (m− 2)) = T(1) + 3 + 8× N

4Operations such that Add,∪, GiveNumber, etc. are considered as elementary operations i.e. they run in Θ(1).



2 - Finite computation tree 139

Algorithm 2: Unfolding(C, s, n)

input : a component C = (S, init, α) over T(Out× )In, a state s ∈ S and positive number
n

output: a finite tree FCT(C, n) containing all paths of C outgoing from s. Each one of these
paths does not go through more n circuit

initialization ;
(S′, init′, α′)← CreateEmptyComponent();
LS← CreateEmptyListOfColoredStates();
P← CreateEmptyStack();
HC ← CreateEmptyListOfStateState();
Push(P, s);
for state ∈ S do

Add(LS, (state, W))

nb← GiveNumber(s);
init′ ← nb;
Add(S′, nb);
ModifyColor(LS, s, G);
(S′, α′), HC ← Enumerate(C, (S′, α′), s, LS, HC, P);
if n == 1 then

return (S′, init′, α′))

else
for (x, nb) ∈ HC do

(S′′, init′′, α′′)← Unfolding(C, x, n− 1);
nb← init′′;
S′ ← S′ ∪ S′′;

α′(y)(i) 7→
{

α′(y)(i) i f y ∈ S′

α′′(y)(i) otherwise



140 Chapter VII Testing of components

Then, T(m) satisfies the recurrence:

T(m) = m(3 + 8× N)

Consequently, Enumerate runs in Θ(mN).

Unfolding: Let T(n) be the number of elementary operations necessary to unfolding a component C over
T(Out× )In with n as the number of times that the algorithm goes through each circuit in C. We can
easily see that Unfolding satisfies the following recurrence:

T(n) =

 9 + m + m× N i f n = 1

(9 + m + m× N) + 6× nb× T(n− 1) otherwise

To guess at a solution, let’s try unrolling the recurrence, by substituting it into itself as follows:

T(n) = 6× nb× T(n− 1) + 9 + m + m× N

T(n− 1) = 6× nb× T(n− 2) + 9 + m + m× N

...

T(n− (n− 2)) = 6× nb× T(1) + 9 + m + m× N

Then, T(n) satisfies the recurrence:

T(n) = (9 + m + m× N)
n

∑
i=0

(6× nb)i

Consequently, Enumerate runs in Θ(mNnbn).
End

Example 2.2 Figure VII.3 shows a graphical representation of a component C (on the left side) and
its unfolding FCT(C, 2) as a finite computation tree (on the right side). Unfolding(C, init, 2) calls
Enumerate which in turn returns a tree t containing all the elementary paths of C (t is colored red) as
well as the set containing the couple (s1, 5). s1 is the first state involved in the circuit (s1s2s3s1) and 5 is
the node associated to s1 in FCT(C, 2). Since we intend to build a tree of depth 2, then Unfolding glues
in 5 the tree t′ (colored blue) built by unfolding C in s1.

3 Test Purpose

As previously mentioned, our model of a specification is described as a coalgebra over T(Out×
)In. Such a model usually contains a growth of exponential states which makes the testing

process difficult even impossible to be implemented. To cope with this problem, test purposes
can be used. A test purpose is a description of the part of the specification that we want to test
and for which test cases are to be generated. In other words, it narrows down the model of
the specification into smaller ones from which test cases are later generated. In [40, 135], test
purposes are described independently of the model of the specification. Then, a synchronous
product is done between the test purpose and the specification in order to keep only the paths
accepted by the specification. In [45, 53], test purposes are deduced from the specification by
construction. More precisely, a test purpose is considered as a finite symbolic subtree of the



3 - Test Purpose 141

s0

s1 s2

s3
s4

a0

a1

a2
a3

a4

0

1

23

4

5

6 7

8

9

a0

a1a4

a2

a3

a4 a1

a2

a3

Figure VII.3 – Example of finite computation tree

symbolic execution tree generated from a specification IOSTS using a symbolic execution tech-
nique. Then, leaves of this tree are labeled by accept and intermediate nodes are labeled by skip
(states leading to states from which it is possible to go to accepting states). All other nodes of
the tree not belonging to the test are then labeled by a special label �.

In order to guide the test derivation process in our approach, we prefer, as in [45, 53], to
describe test purposes by selecting the part of the specification that we want to explore. We
therefore build the finite computation tree FCT(C) of the component C, and consider a test
purpose as a tagged finite computation tree of the specification. The leaves of the FCT which
correspond to paths that we want to test are tagged accept. All internal nodes on such paths
are tagged skip, and all other nodes are tagged �.

In summary, these labels in trees serve either to accept, or to reject the behaviours of speci-
fications as follows: a path that is a part of the test purpose is called path purpose and noted X .
The last node of the path in question is tagged accept. All other nodes of this path are tagged
skip. They correspond to the fact that it is still possible to transmit additional input i to the
implementation and receive its output o to reach an accepted node. Finally, all other nodes that
are not part of X are tagged �.

Definition 3.1 (Test Purpose) Let FCT(C, n) be the finite computation tree of depth n associated to a
component C. A test purpose TP for C is a mapping TP : SFCT −→ {accept, skip,�} such that:

• there exists a C−path p ∈ SFCT such that TP(p) = accept

• if TP(〈(s0, . . . , sn), (i0, . . . , in−1)〉) = accept, then:

∀j, 1 ≤ j ≤ n− 1, TP(〈(s0, . . . , sj), (i0, . . . , ij−1)〉) = skip

• TP(〈s0, ()〉) = skip



142 Chapter VII Testing of components

• if TP(〈(s0, . . . , sn), (i0, . . . , in−1)〉) = �, then:

TP(〈(s0, . . . , sn, s′n+1, . . . , s′m), (i0, . . . , in−1, i′n, . . . , i′m−1)〉) = �

for all m > n and for all (s′j)n<j≤m and (i′k)n≤k<m

In order to build a test purpose on a finite computation tree, we choose the leaves of the tree
that we accept as correct finite behaviours and tag them with accept. We then tag every node
which represents a prefix of an accepted behaviour with skip. The other nodes, which lead to
behaviours that we do not want to test, are tagged with �.

Note a test purpose can be characterized by one path purposeX , two path purposesX , even
all the finite computation tree.

In the following, we use the notation TP to refer to an arbitrary test purpose.

Example 3.1 From the finite computation tree FCT(M, 4) shown in Figure VII.2, one defines three test
purposes:

TP1: this test purpose allows us to ignore the behaviours ofM related to failure and repair and
to concentrate on its interaction with a user. When the machine fails, we reach node p4, p5 or p11

which are tagged with �. This indicates that we are not interested in further behaviour from these
nodes. p2, p9 and p10 are tagged with accept because they are nodes corresponding to the expected
behaviour. All nodes leading from the root p0 to these nodes are tagged with skip.

TP2: this test purpose describes the behaviours of M where it delivers coffee and goes into a
blocked state. When the machine fails after delivering coffee, we only reach node p5 which we tag
with accept. Then, p0, p1 and p2 are tagged skip and all other nodes are tagged with �.

TP3: this test purpose describes the behaviours ofM where it fails to deliver coffee to the user but
refunds him. When the machine refunds the user and goes into a blocked state, we reach node p4

or p11 which we tag with accept. Then, p0, p1, p3 and p6 are tagged skip and all other nodes are
tagged with �.

4 Test generation guided by test purposes

Conformance testing is based on a conformance relation between the component modeling the
implementation iut and the component denoting the specification spec. The conformance rela-
tion we use is cioco, which requires that the iut’s outputs are among the outputs allowed by spec
for every specified input sequence. A test execution is then the process of feeding the iut with a
test case, observing its response and giving some test verdicts.

There exist several different techniques to generate test cases systematically from a specifica-
tion in such a way these test cases can distinguish correct implementations, and incorrect ones.
These techniques differ by both specification model and conformance relation used for testing.
They can be classified in two main categories: random techniques and techniques guided by test
purposes. Random techniques, such as in [47, 28], are used to generate test cases based on non-
deterministic choices. This is done by exploring the specification randomly and selecting new
actions until a certain user-defined bound on steps is reached, or no match is found between
the outputs of the implementation and of the specification. Techniques guided by test purposes,
such as in [40, 45], are based on the definition of a test purpose which is used to allow the tester



4 - Test generation guided by test purposes 143

p0

p1

p2
p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

coin|abs

coffee|served coffee|served coffee|refund

repair|abs
coin|abs

repair|abs

coin|abs
coffee|served

coffee|served
coffee|refund

coin|abs

skip

skip

accept
skip

�

�
skip

�

�

accept
accept

�

�

(a) Test purpose TP1 with three path purposes X

p0

p1

p2
p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

coin|abs

coffee|served coffee|served coffee|refund

repair|abs
coin|abs

repair|abs

coin|abs

co
ffe

e|
se

rv
ed

coffee|served

coffee|refund

coin|abs

skip

skip

skip
�

�

accept
�

�

�

�
�

�

�

(b) Test purpose TP2 with one path purpose X

p0

p1

p2
p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

coin|abs

coffee|served coffee|served coffee|refund

repair|abs
coin|abs

repair|abs

coin|abs

co
ffe

e|
se

rv
ed

coffee|served

coffee|refund

coin|abs

skip

skip

�
skip

accept

�
skip

�

�

�
�

accept

�

(c) Test purpose TP3 with two path purposes X

Figure VII.4 – Test purposes of the coffee machine



144 Chapter VII Testing of components

to select a property to be tested. In [40], a test case can be generated by computing the synchro-
nized product of the specification and the test5 purpose. In [45], test cases are generated from a
finite symbolic tree obtained according to a test purpose which can be either chosen manually
by the user or computed automatically by means of inclusion 6 criteria.

Similarly to [45], we propose an approach for test case selection according to a test purpose.
The advantage of the testing theory proposed in [45] is that it is based on the conformance rela-
tion ioco that we adopt in our framework and as previously stated, has received much attention
by the community of formal testing thanks to its suitability for both conformance testing and
automatic test derivation. Furthermore, test generation algorithms proposed in [45] are simple
in their implementation and efficient in their execution.

Figure VII.5 illustrates graphically the elements of the approach. A test case is generated
from the finite computation tree FCT(spec) of a specification spec enriched with a test purpose
TP. It is considered as a sequence of input-output actions built progressively by interacting
with the implementation iut, and which examines one of the behaviours of the specification
spec selected by the test purpose TP (i.e. the last node of the path is tagged accept). The under-
lying idea to building such a sequence is the following: we choose an input action i according
to the interactions with the iut previously computed and the set of reachable states that can
lead to accepting states of TP. Then, the reaction (output) o received from the implementation
is compared to the specified ones, and depending on the result of this comparison, our algo-
rithm continues its computation, or stops by generating a verdict. We therefore distinguish four
verdicts:

• Fail: means that the output o does not match the specification, and then the interaction
sequence does not form the trace of any path purpose. Hence, the goal of the test case is
not reached;

• Pass: means that no observable difference between the specification and the implementa-
tion is detected;

• Inconc: means that no error is detected but, the test purpose is not achieved;

• WeakPass: means that the implementation behaves correctly but, due to the fact of non-
deterministic specification, we are not sure whether the test purpose has been achieved.

4.1 Preliminaries

In this section, we introduce some notations and definitions that will be used in describing our
algorithm for generating conformance tests for components.

As mentioned above, a test case is a sequence generated by a test purpose TP interacting
with iut. This is denoted by:

[ev0, ev1, . . . , evn|V]

where for all j ∈ [0, . . . , n], evj = i|o is an elementary input-output with i ∈ In, o ∈ Out and
V ∈ {Fail, Pass, Inconc, WeakPass}.

We note stimobs(i|o) the output o from iut when stimulating it with input i.

5Test purposes are usually supposed to be given by an expert.
6It is stated in [45], that inclusion criterion can be used to answer industrial needs where engineers are not always

able to define which behaviour they want to test.



4 - Test generation guided by test purposes 145

Specification Finite computation tree

Test purpose: tagged
finite computation tree

Algorithm

Pass,
Fail,
Inconc,
WeakPass

Implementation

Unfolding

next input

check output offer output

observe output

Test purpose

Figure VII.5 – General view of the algorithm

In order to compute the set of reachable states that lead to accept states after a given input-
output sequence, we define a current set of states denoted by CS that contains a subset of the
states of the test purpose. It is initialized to the initial state of TP. We also introduce three
functions to help explore TP by selecting paths that lead to accept states:

• Next(CS, ev) is the set of directly reachable states from the current set of states CS after
executing ev;

• NextSkip(CS, ev) is the set of states in Next(CS, ev) which are labeled by skip;

• NextPass(CS, ev) is the set of states in Next(CS, ev) which are labeled by accept.

More formally, these three sets are defined as follows:

Definition 4.1 Let TP : SFCT −→ {accept, skip,�} be a test purpose for a component C, ev = 〈i|o〉
an event, and S′ a subset of SFCT :

• Next(S′, ev) =
⋃

s′∈S′
({s | (o, s) ∈ η′Out×SFCT

(αFCT(s′)(i))});

• NextSkip(S′, ev) = Next(S′, ev)
⋂

TP(S′)|skip
;

• NextPass(S′, ev) = Next(S′, ev)
⋂

TP(S′)|accept
.

with TP(S′)|tag = {s′ ∈ S′ | TP(s′) = tag}



146 Chapter VII Testing of components

4.2 Inferences rules

We define our test case generation algorithm as a set of inferences rules. Each rule states that
under certain conditions on the next observation of output action from iut or the next stimula-
tion of iut by an input action, the algorithm either performs an exploration of the other states of
TP, or stops by generating a verdict.

We structure these rules as

CS
Results

cond(ev)

where

• CS is a set of current states;

• Results is either a set of current states or a verdict;

• cond(ev) is a set of conditions including stimobs(ev).

Each rule must be read as follows:

Given the current set of states CS, if cond(ev) is satisfied, then the algorithm may achieve a step of
execution, with ev as input-output elementary sequence.

This algorithm can be seen as an exploration of the finite computation tree starting from the
initial state. It switches between sending stimuli to the implementation and waiting for output
of the implementation according to the inference rules as long as a verdict is not reached. We
distinguish two kinds of inference rules : exploring rules and diagnosis rules. The first kind is
applied to pursue the computation of the sequence as long as Result is a set of states. The second
kind leads to a verdict and stops the algorithm.

Algorithm iut

stimobs(i0|o0)

stimobs(ij |oj)

stimobs(in |on)

Figure VII.6 – Communication between the iut and the algorithm

Rule 0 Initialization rule7:
{s0

FCT}

7This rule is involved only once when starting the algorithm.



4 - Test generation guided by test purposes 147

Rule 1 Exploration of other states: the emission o after a stimulation by i on the iut is compat-
ible with the test purpose but no accept is reached.

CS
Next(CS, ev)

stimobs(ev), NextSkip(CS, ev) 6= ∅, NextPass(CS, ev) = ∅

Rule 2 Generation of the verdict Fail: the emission from the iut is not expected with regards to
the specification.

CS
Fail stimobs(ev), Next(CS, ev) = ∅

Rule 3 Generation of the verdict Inconc: the emission from the iut is specified but not compat-
ible with the test purpose.

CS
Inconc stimobs(ev),


Next(CS, ev) 6= ∅,

NextSkip(CS, ev) = NextPass(CS, ev) = ∅

Rule 4 Generation of the verdict Pass: all next states directly reachable from the set of current
set are accept ones.

CS
Pass stimobs(ev), NextPass(CS, ev) = Next(CS, ev), Next(CS, ev) 6= ∅

Rule 5 Generation of the verdict WeakPass: some of the next states are labelled by accept, but
not all of them.

CS
WeakPass stimobs(ev),


NextPass(CS, ev) ⊂ Next(CS, ev),

NextPass(CS, ev) 6= ∅

Let us note that three forms of ev are distinguished: i|o, i|εo and εi|o. Hence, each of these
rules except rule 0 can be used in several ways according to the form of ev:

• stimobs(ev = i|o) means o is produced by iut when it is stimulated with i;

• stimobs(ev = i|εo) means the stimulation of iut with i does not produce any output;



148 Chapter VII Testing of components

• stimobs(εi|o) means o is produced spontaneously by iut.

These possibilities for ev therefore give rise to a generic algorithm that can be applied to a wide
variety of state-based systems ([47, 40, 65]) by choosing the appropriate monad T and input and
output sets.

4.3 Example

We illustrate the algorithm previously proposed with concrete examples. We consider the test
purposes TP1 and TP2 defined in Figure VII.4a and Figure VII.4b respectively, and show how
test cases can be obtained by applying the rules presented in Section 4.2. Let us first recall that
the algorithm uses the following notation:

CS event
rule

CS′

where:

• event denotes the current element of the considered trace, and is of the form input|output;

• rule stands for the rule applied to get the next set of states CS′.

Test cases for TP1

Fail To get the verdict Fail, we consider the following trace:

[coin|abs, coffee|served, coin|refund
∣∣∣ Fail]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs
rule 1

CS1 = {p1}
coffee|served

rule 1
CS2 = {p2, p3}

CS2
coin|refund

rule 2
Fail

The verdict Fail is due to the following equality:

Next(CS2, coin|refund) = ∅

Inconc To get the verdict Inconc, we consider the following trace:

[coin|abs, coffee|served, coin|abs, coffee|refund
∣∣∣ Inconc]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs
rule 1

CS1 = {p1}
coffee|served

rule 1
CS2 = {p2, p3}

CS2
coin|abs
rule 1

CS3 = {p6}
coffee|refund

rule 3
Inconc

The verdict Inconc is due to the following two equalities:



4 - Test generation guided by test purposes 149

• Next(CS3, coffee|refund) = {p11} 6= ∅

• NextPass(CS3, coffee|refund) = NextSkip(CS3, coffee|refund) = ∅

Pass To get the verdict Pass, we consider the following trace:

[coin|abs, coffee|served, coin|abs, coffee|served
∣∣∣ Pass]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs
rule 1

CS1 = {p1}
coffee|served

rule 1
CS2 = {p2, p3}

CS2
coin|abs
rule 1

CS3 = {p6}
coffee|served

rule 4
Pass

The verdict Pass is due to the following equality:

NextPass(CS3, coffee|served) = Next(CS3, coffee|served), Next(CS3, coffee|served) 6= ∅

WeakPass To get the verdict WeakPass, we consider the following trace:

[coin|abs, coffee|served
∣∣∣WeakPass]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs
rule 1

CS1 = {p1}
coffee|served

rule 5
WeakPass

The verdict WeakPass is due to the two equalities:

• NextPass(CS1, coffee|served) ⊂ Next(CS1, coffee|served)

• NextPass(CS1, coffee|served) = {p2} 6= ∅

Test cases for TP2

Fail To get the verdict Fail, we consider the following trace:

[coin|abs, coffee|served, repair|refund
∣∣∣ Fail]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs
rule 1

CS1 = {p1}
coffee|served

rule 1
CS2 = {p2, p3}

CS2
repair|refund

rule 2
Fail

The verdict Fail is due to the following equality:

Next(CS2, repair|refund) = ∅



150 Chapter VII Testing of components

Inconc To get the verdict Inconc, we consider the following trace:

[coin|abs, coffee|served, coin|abs
∣∣∣ Inconc]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs
rule 1

CS1 = {p1}
coffee|served

rule 1
CS2 = {p2, p3}

CS2
coin|abs
rule 3

Inconc

The verdict Inconc is due to the following two equalities:

• Next(CS2, coin|abs) = {p6} 6= ∅

• NextPass(CS2, coin|abs) = NextSkip(CS3, coin|abs) = ∅

Pass To get the verdict Pass, we consider the following trace:

[coin|abs, coffee|served, repair|abs
∣∣∣ Pass]

The algorithm is applied as follows:

rule 0
CS0 = {p0}

coin|abs
rule 1

CS1 = {p1}
coffee|served

rule 1
CS2 = {p2, p3}

CS2
repair|abs

rule 4
Pass

The verdict Pass is due to the following equality:

NextPass(CS2, repair|abs) = Next(CS2, repair|abs), Next(CS2, repair|abs) 6= ∅

WeakPass There is no test cases ending by the verdict WeakPass for TP2.

4.4 Properties

A test case informs us of the conformance of the implementation to its specification. The non-
existence of a Fail verdict leads to a conformance, and any non-conformance should be detected
by a test case ending by a Fail verdict. In order to study the coherence between the notion of
conformance applied to an implementation under test and its specification, and the notion of
a test case generated by our algorithm, we denote by CS and EV respectively the whole set
of current state sets and the whole set of input-output elementary sequences used during the
application of the set of inference rules on an implementation iut according to a test purpose TP.
We then introduce a transition system whose states are the sets of current states and four special
states labeled by the verdicts. Two states are linked by a transition labeled by an input-output
elementary sequence. This transition system is formally defined as follows:

Definition 4.2 (Execution) Let TP be a test purpose for a specification spec, let iut be an implemen-
tation, let CS be the whole set of current state sets and let EV be the whole set of input-output ele-
mentary sequences. Then, the execution of the test generation algorithm on iut according to TP
denoted by TS(TP, iut) (see its explanation in Section 4.2) is the coalgebra (STS, αTS) over the signature
( )EVdefined by:



4 - Test generation guided by test purposes 151

• STS = CS ∪ V where V is the set whose elements are Fail, Pass, Inconc and WeakPass;

• αTS is the mapping which for every CS ∈ CS and for every ev ∈ EV is defined as follows:

αTS(CS)(ev) =



Next(CS, ev) if NextSkip(CS, ev) 6= ∅, NextPass(CS, ev) = ∅

Fail if Next(CS, ev) = ∅

Inconc if NextSkip(CS, ev) = NextPass(CS, ev) = ∅
and Next(CS, ev) 6= ∅

Pass if Next(CS, ev) = NextPass(CS, ev)
and Next(CS, ev) 6= ∅

WeakPass if NextPass(CS, ev)  Next(CS, ev)
and NextPASS(CS, ev) 6= ∅

With this definition, test cases are sets of possible traces which can be observed during an exe-
cution of TS(TP, iut), and lead to a verdict state.

Definition 4.3 (Test cases) Let TS(TP, iut) = (STS, αTS) be the execution of the test generation al-
gorithm on iut according to TP. A test case for TP is a sequence [ev0, . . . , evn|V] for which there is a
sequence of states s0, . . . , sn ∈ CS with ∀j, 0 ≤ j < n, sj+1 = αTS(sj)(evj), and there is a verdict state
V ∈ V such that V = αTS(sn)(evn).

We note st(TP, iut) the set of all possible test cases for TP.

We can now introduce the notation:

vdt(TP, iut) = {V | ∃ev0, . . . , evn, [ev0, . . . , evn|V] ∈ st(TP, iut)}

Theorm 4.1 (Correctness and completeness) For any specification spec and any iut:

• Correctness: If iut conforms to spec, then for any test purpose TP, Fail 6∈ vdt(TP, iut).

• Completeness: If iut does not conform to spec, then there exists a test purpose TP such that
Fail ∈ vdt(TP, iut).

Proof
Proof of the correctness: Let spec = (S, s0, α) be a specification over a signature H = T(Out× )In

and FCT = (SFCT , s0
FCT , αFCT) be its finite computation tree. Let us prove the correctness using the

contraposition principle. This means that to prove:

if iut conforms to spec, for any test purpose TP, Fail 6∈ vdt(TP, iut).

we have to prove:

if there exists a test purpose TP such that Fail ∈ vdt(TP, iut), then



152 Chapter VII Testing of components

iut does not conform w.r.t cioco to spec.

More precisely, according to the definition of cioco, we have to prove that:

there exists a finite trace tr ∈ Trace(FCT), an input i ∈ In such that

Outiut(iut after (tr, i)) * OutFCT(FCT after (tr, i))

This is proved by the following proposition:

Proposition 4.1 If there exists a test purpose TP such that [i0|o0, . . . , in|on|Fail] ∈ st(TP, iut), then:

1. 〈i0|o0, i1|o1, . . . , in−1|on−1〉 ∈ Trace(FCT).

2. in ∈ In

3. on ∈ Outiut(iut after (〈i0|o0, . . . , in−1|on−1〉, in)).

4. on 6∈ Outspec(spec after (〈i0|o0, . . . , in−1|on−1〉, in)).

First of all, let us denote 〈i0|o0 . . . in−1|on−1〉 by 〈ev0 . . . evn−1〉.

Proof of (1).
In order to show that the sequence 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT), we are going to reason on
the way of computation of this sequence by using the inference rules. First of all, let TS(TP, iut) be
the execution of the test generation algorithm and st(TP, iut) be the set of generated test cases. Since
[i0|o0, . . . , in|on|Fail] ∈ st(TP, iut), then

there exists ∀j, 0 ≤ j < n, Sj ∈ CS such that S0 = {s0
TS}, Sj+1 = αTS(Sj)(evj) and

Fail = αTS(Sn)(evn)

Hence, for every j, 0 ≤ j < n, Sj+1 which equals to Next(Sj, evj) is not empty by Definition 4.2. Hence,
by Definition 4.1, for every j, 0 ≤ j < n, every state belonging into Sj+1 is a state of FCT. This means
that for every j, 0 ≤ j < n, every state s ∈ Sj is related to a state s′ ∈ Sj+1 by evj. Then, the sequence
〈ev0 . . . evj . . . evn−1〉 ∈ Trace(FCT).

Proof of (2).
We have proved above that 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT) and Sn 6= ∅.
We have that [i0|o0 . . . in|on|Fail] ∈ st(TP, iut) i.e. submitting the input in to the implementation under
test will produce the output on that is not specified in FCT(C). Then, it is clear that i ∈ In is an input of
FCT(spec).

Proof of (3).
It is obvious because [i0|o0, i1|o1, . . . , in|on|Fail] ∈ st(TP, iut).



5 - Instantiating of the approach 153

Proof of (4).
We know that 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT) and Sn 6= ∅. We have that [i0|o0 . . . in|on|Fail] ∈
st(TP, iut) i.e. applying in|on has to lead to a Fail verdict. This means that αTS(Sn)(in|on) = Fail.
Hence by Definition 4.2, Next(Sn, in|on) has to be empty. But we know that Next(Sn, in|on) ⊆ SFCT .
Hence, 〈i0|o0, . . . , in−1|on−1, in|on〉 does not belong to Trace(FCT).

Proof of the completeness : Let spec = (S, s0, α) be a specification over a signature H = T(Out× )In

and FCT = (SFCT , s0
FCT , αFCT) be its finite computation tree. Let us prove that the completeness holds.

For this, let us assume that iut does not conform to spec and let us prove that there exists a test purpose
TP such that there exists [ev0, . . . , evn|Fail] ∈ st(TP, iut).
First of all, iut does not conform to spec. According to the definition of cioco, there exists a trace tr =

〈ev0 . . . evn−1〉 ∈ Trace(FCT) and an input i ∈ In such that

Outiut(iut after (tr, i)) * OutFCT(FCT after (tr, i))

i.e. there exists an output o′n of iut such that

• o′n ∈ Outiut(iut after (tr, in));

• o′n 6∈ OutFCT(FCT after (tr, in)).

That means:
〈ev0, . . . , evn−1, in|o′n〉 ∈ Trace(iut) (VII.2)

and
〈ev0, . . . , evn−1, in|o′n〉 6∈ Trace(FCT) (VII.3)

Since in ∈ In, then there also exists an output on such that on ∈ OutFCT(FCT after (tr, in)) i.e.

〈ev0, . . . , evn−1, in|on〉 ∈ Trace(FCT) (VII.4)

Let us denote 〈in|on〉 by evn and 〈in|o′n〉 by ev′n.

Now, let us denote by TP a test purpose of FCT such that there exists a state s ∈ SFTC such that s belongs
to the set of reachable states from the initial state of FCT after executing the trace 〈ev0 . . . evn−1evn〉 on
FCT, and TP(s) = accept i.e. 〈ev0 . . . evn−1evn〉 forms a path of TP. Let us prove that there exists
[ev0 . . . evn−1ev′n|Fail] ∈ st(TP, iut). For this, it is enough to show that

∃(Sj)0≤j≤n such that ∀j, 0 ≤ j < n, Sj+1 = αTS(Sj)(evj) ∈ CS and Fail = αTS(Sn)(ev′n)

We have that 〈ev0 . . . evn−1〉 ∈ Trace(FCT), then, for every j, 0 ≤ j < n, Sj exists because for every
j, 1 ≤ j < n, αTS(Sj)(evj) = Next(Sj, evj) and S0 = {s0

FCT}. Thus, what remains is to prove that
there is a verdict state Fail such that Fail = αTS(Sn)(evn).
By Equation VII.3, 〈ev0 . . . ev′n〉 6∈ Trace(FCT) and by Equation VII.2 〈ev0 . . . evn〉 ∈ Trace(iut),
hence Next(Sn, ev′n) = ∅, and consequently αTS(Sn)(evn) = Fail.
End

5 Instantiating of the approach

From the genericity of our framework, the testing technique proposed in this chapter, can also
be applicable to any-state formalisms which are instances of our framework. Figure VII.7 illus-
trates the different steps to generate correct test cases for any model instance of our framework.



154 Chapter VII Testing of components

Models

spec

iut

Components

φ(spec)

φ(iut)

φ

φ

Models Components

iut rel spec φ(iut) cioco φ(spec)

Correct test cases

⇔

O
ur

al
go

rit
hm

Tr
an

sf
or

m
te

st
ca

se
s

Figure VII.7 – Instantiating of the algorithm

First, we define the function φ which transforms the model in which a specification is given (for
example, an IOLTS or Mealy automaton) into our framework. This function has to be bijective
to allow us to go back to the original formalism. This transformation is illustrated on the left side
in Figure VII.7. Second, we need to prove the equivalence between the conformance relation rel
used between iut and spec and the cioco defined on their images φ(iut) and φ(spec). Third, we
apply our proposed algorithm for test case derivation on φ(spec) to generate correct test cases.
Finally, we transform the obtained test cases into test cases described in the original formalism.
Hence, testing systems, whose specification models can be viewed as instances of our compo-
nent definition, require us to define the bijective transformation φ and to prove that the follow-
ing property holds:

iut rel spec ⇐⇒ φ(M1) cioco φ(M2)



Chapter VIII

Integration Testing

1 Compositional testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

1.1 Compositional testing with cioco . . . . . . . . . . . . . . . . . . . . . . . 156

1.2 Compositionality for cartesian product . . . . . . . . . . . . . . . . . . . 160

1.3 Compositionality for feedback operators . . . . . . . . . . . . . . . . . . 160

1.4 Compositionality for complex operator . . . . . . . . . . . . . . . . . . . 164

2 Test purposes for sub-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2.1 Sub-systems and projection . . . . . . . . . . . . . . . . . . . . . . . . . . 167

2.2 System-based test purposes . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

In Chapter VII, we have shown how component implementations are tested to be cioco-
correct to their component specifications separately. This is classically known as unitary testing.
The present chapter intends to validate the complex systems made by assembling a set of state-
based components. This is classically known as compositional testing (or component based testing).
Due to the growing complexity of the space state of the complex systems, it is difficult even
impossible to use the black-box testing approach that we proposed in Chapter VII. Therefore,
there is a need to systematically derive test cases based on the structure of the complex system.
We believe that it is natural and easier to test a system by testing only its subsystems.

Hence, in this chapter we intend to contribute in two ways:

1. By defining a compositional testing approach. The main idea is to test an integrated sys-
tem assuming that its underlying components have already been tested in isolation and
are correct [31]. The operators used to compose components are assumed to be well-
implemented and to preserve their specifications. Thus, the problem of compositional
testing that we address can be seen as follows: if single components of a system con-
form to their specifications, can we conclude that the whole system is in conformance to
its specification? As a consequence of positive answer to this question, we can test the
global system by testing in isolation its components that may be done at various steps of
development and potentially developed by different teams.

2. By strengthening the quality of components by taking into account their involvement in
the global system that encapsulates them. The main idea consists in showing how to
strengthen the correctness of each component involved in a global system, by choosing
suitable test purposes for them. This will be done by defining a projection mechanism



156 Chapter VIII Integration Testing

that, from a behaviour of the global system, will help to generate test purposes capturing
behaviours of sub-systems that typically occur in the whole system [49].

In Section 1, we study the compositional testing problem in our framework by explaining
and formalizing this problem. In Section 2, we study the projection mechanism by showing
how to define test purposes from global behaviour of a system and how to project them on any
sub-system of it. Finally, in Section 3, comparisons with existing works close to our modeling
framework will be done.

1 Compositional testing

Compositional testing consists in testing communicating components that have been tested sep-
arately. It aims to guarantee the correctness of the integration of a set of components S =

op(C1, . . . , Cn) from the correctness of each components Ci in isolation where op is the integra-
tion operator of interest. Thus, such a compositional testing theory provides a way to test the
integrated system only by testing its sub-systems i.e. there is no need to re-test its conformance
correction. It is formally expressed as follows:

Given implementation models iut1, . . . , iutn and their specifications spec1, . . . , specn

∀i, 1 ≤ i ≤ n, (iut1 rel spec1), . . . , (iutn rel specn) =⇒ op(iut1, . . . , iutn) rel op(spec1, . . . , specn)

where rel and op denote the conformance relation and the integration operator of interest respectively.

Hence, once this property is verified, the correctness of the integrated system is obtained from
the correctness of the individual components. To test the integrated system, it is not necessary
to consider it as a whole, but it is enough to consider its sub-systems and test them separately.
Indeed, the contraposition of this property is the following:

¬
(

op(iut1, . . . , iutn) rel op(spec1, . . . , specn)
)
=⇒ ∃i, 1 ≤ i ≤ n,¬(iuti rel speci)

Thus, by looking at this new property, we can easily see that non-correctness of the integrated
system under test op(iut1, . . . , iutn) implies that at least one of its components iut1, . . . , iutn is
incorrect. In other words, that means to test op(iut1, . . . , iutn), it suffices to test iut1, . . . , iutn in
isolation.

1.1 Compositional testing with cioco

In this subsection, we study the compositional testing problem in our framework. Then, we
intend to address the following question:

Given that the components C1, . . . , Cn over the signatures
H1 = T(Out1 × )In1 , . . . , Hn = T(Outn × )Inn respectively, are cioco-correct1 separately, may we

conclude that their integration C = op(C1, . . . , Cn) using a complex operator2 op is also cioco-correct?

The response to this question amounts to first addressing both for cartesian product and feed-
back operator, and then by showing cioco correctness is stable for its composition. Hence, in
this following we intend to give answers to the following three questions:

Question 1:
1For instance using our conformance testing approach defined in Chapter VII.
2See Chapter V, for the definition of a complex operator.



1 - Compositional testing 157

Given (iutk cioco speck) for k = 1, 2,
is it the case of ⊗(iut1, iut2) cioco ⊗(spec1, spec2)?

Question 2:

Given (iut cioco spec), is it the case of←↩I(iut) cioco ←↩I(spec)?

Question 3:

Given (iut cioco spec), is it the case of 	I(iut) cioco 	I(spec)?

In the following subsections we will show that the answer to Question 1 is positive without
imposing any conditions i.e. cioco is naturally compositional for the cartesian product. How-
ever, the answer to both Question 2 and Question 3, in general, is negative. To a get positive an-
swer, the specification should be input-enabled. In other words, compositionality does not hold
for cioco with respect to the feedback operators, unless the specification model is input-enabled.
Without this condition, even if both iut1 and iut2 are cioco-correct, the resulting implementation
obtained by means of feedback operators may not be.

Example 1.1 To illustrate our compositional testing, we consider two components3 of a coffee machine:
a "money component"M that handles the inserted coins and "drink component" D that produces
the drinks.

Figure VIII.1 illustrates the architecture of these two components.

Money component Drink component

makeT

error

makeCcoinC

refund

coinT

coffee

preparing

tea

Figure VIII.1 – Architecture of a coffee machine in components

We use the following specifications and implementations ofM and D:

Money component specification specM:

when it receives a coffee coin "coinC" (resp. a tea coin "coinT") from the user, it gives an order "makeC"
(resp. "makeT") to the drink component D to make coffee (resp. tea).

Drink component specification specD :

3This example is inspired from the example presented in [31].



158 Chapter VIII Integration Testing

when it receives the order "makeC" (resp. "makeT") to make coffee (resp. tea) from the money component
M, if there is nothing wrong during the drink preparation process, it directly delivers the coffee (resp.
tea) to the user, or else it sends an error message to the money component in order to refund the user.

Money component implementation iutM:

it behaves as the money component4 specification specM, but in addition it does some extra functional-
ities, that is if an error occurs during the drink preparation process, it refunds the inserted coin to the
user.

Drink component implementation iutD :

it behaves exactly as the drink component specification specD .

In our framework, specM, iutM, specD and iutD are modeled as follows:

• specM is the coalgebra ({q0}, q0, α1) over the signature

({makeC, makeT} × ){coinC,coinT}

where α1 is depicted in Figure VIII.2a.

• iutM is the coalgebra ({q′0, q′1}, q′0, α′1) over the signature

({makeC, makeT, refund} × ){coinC,coinT,error}

where α′1 is depicted in Figure VIII.2c.

• specD is the coalgebra ({s0, s1, s2, s3, s4}, s0, α2) over the signature

({error, tea, coffee, preparing} × ){makeC,makeT}

where α2 is depicted in Figure VIII.2b.

• iutD is the coalgebra ({s′0, s′1, s′2, s′3, s′4}, s′0, α′2) over the signature

({error, tea, coffee, preparing} × ){makeC,makeT}

where α′2 is depicted in Figure VIII.2d.

The componentsM and D may communicate separately (for instance D may execute the transition
labeled with abs|coffee while M does nothing) or jointly in synchronization (for instance when M
execute the transition labeled with coinC|makeC,M receives instantaneously the output makeC and
then produces the output coffee). Then, the suitable composition ofM andD is the synchronous parallel
composition � defined in Chapter V, Section 2.5.

As far as the compositional testing is concerned, we have that

(iutM cioco specM) and (iutD cioco specD)

Our goal is to know if this is enough to ensure whether the global implementation �(iutM, iutD)
is in conformance with respect to cioco to the global specification �(specM, specD). Hence, to test
�(iutM, iutD), it suffices to test if (iutM cioco specM) and (iutD cioco specD). An answer to this
question is given later in this chapter.

4For the sake of readability, input completeness (implementations) are not depicted in Figure VIII.2c and Fig-
ure VIII.2d.



1 - Compositional testing 159

q0

coinC|makeC

coinT|makeT

(a) money
component
specification
specM

s0

s1 s2

s3

s4

makeC|preparing makeT|preparing

abs|error abs|error

abs|coffee abs|tea

abs|errormakeC,makeT|abs

(b) drink component specification specD

q′0

q′1

coinC|makeC

error|refund

(c) money compo-
nent implementa-
tion iutM

s′0

s′1 s′2

s′3

s′4

makeC|preparing makeT|preparing

abs|error abs|error

abs|coffee abs|tea

abs|errormakeC,makeT|abs

(d) drink component implementation iutD

Figure VIII.2 – Illustration of cioco’s compositionality



160 Chapter VIII Integration Testing

1.2 Compositionality for cartesian product

We show here that cioco is naturally preserved by the cartesian product.

Theorm 1.1 Let H1 = T(Out1 × )In1 and H2 = T(Out2 × )In1 be two signatures.
Let H = T((Out1×Out2)× )In1×In2 be the cartesian product interface for H1 and H2. Let iutj, specj ∈
Comp(Hj) for j = 1, 2 and ⊗((iut1, iut2)), ⊗((spec1, spec2)) ∈ Comp(H). Then, we have:

iut1 cioco spec1

iut2 cioco spec2

 =⇒ ⊗((iut1, iut2)) cioco ⊗ ((spec1, spec2))

Proof Let us assume that:

(iut1 cioco spec1) and (iut2 cioco spec2)

and let us then prove that:

⊗((iut1, iut2)) cioco ⊗ ((spec1, spec2))

Let us use the contradiction principle. For this, let us assume that

¬(⊗((iut1, iut2)) cioco ⊗ ((spec1, spec2)))

i.e. there exists a finite trace tr = 〈(i1, i′1)|(o1, o′1), . . . , (in, i′n)|(on, o′n)〉 ∈ Trace(⊗((spec1, spec2)))

and (i, i′) ∈ In1 × In2 such that there exists an output (o, o′) ∈ Out1 × Out2 among the outputs
obtained after executing (tr, (i, i′)) on ⊗((iut1, iut2)) not belonging to the ones obtained after executing
(tr, (i, i′)) on ⊗((spec1, spec2)).

Now, we have tr = 〈(i1, i′1)|(o1, o′1), . . . , (in, i′n)|(on, o′n)〉 ∈ Trace(⊗((iut1, iut2))). According to the
cartesian product definition, it is easy to show that the two traces:

tr1 = 〈i1|o1, . . . , in|on〉 ∈ Trace(iut1) and tr2 = 〈i′1|o′1, . . . , i′n|o′n〉 ∈ Trace(iut2)

are respectively the traces involved in iut1 and iut2 to obtain tr. We also know by hypothesis that tr1 ∈
Trace(spec1) and tr2 ∈ Trace(spec2).

Since (o, o′) ∈ Out(⊗((iut1, iut2)) after (tr, (i, i′))) and tr1 and tr2 are used to obtain tr, then o ∈
Out(iut1 after (tr1, i)) and o′ ∈ Out(iut2 after (tr2, i′)). Similarly, o 6∈ Out(spec1 after (tr1, i))
and o′ 6∈ Out(spec2 after (tr2, i′)) because (o, o′) 6∈ Out(⊗((spec1, spec2)) after (tr, (i, i′))) and
tr1 and tr2 are used to obtain tr. Hence, there exists a trace tr1 ∈ Trace(spec1), an input i of spec1
and an output o ∈ Out1 such that o ∈ Out(iut1 after (tr1, i)) and o 6∈ Out(spec1 after (tr1, i))
(respectively there exists a trace tr2 ∈ Trace(spec2), and input i′ of spec2 and an output o′ ∈ Out2

such that o′ ∈ Out(iut2 after (tr2, i′)) and o′ 6∈ Out(spec2 after (tr2, i′))). Indeed, this means that
¬(iut1 cioco spec1) and ¬(iut2 cioco spec2). Hence, we have a contradiction with our hypothesis.
End

1.3 Compositionality for feedback operators

We show here that the compositionality of cioco for both synchronous and relaxed feedback
operators cannot be obtained without any assumptions made on both specifications and imple-
mentations.
We first give an example that illustrates the assumptions required to obtain the compositionality
of cioco with respect to the feedback operators.



1 - Compositional testing 161

Example 1.2 Figure VIII.3 shows two implementation models iut1 and iut2 that have been tested to be
cioco-correct according to their respective specification models spec1 and spec2. It is easy to see that

(iut1 cioco spec1) and (iut2 cioco spec2)

q0

q1

q2

s0

s1

s2 s3

spec1iut1

i1|o1

i2|o1 i2|o2

i1|o1

i2|o1

(a) iut1 cioco spec1

q′0

q′1

q′2 q′3

spec2iut2

s′0

s′1

s2

o1|o3

o2|o4

o1|o3

o1|o5 o2|o4

(b) iut2 cioco spec2

Figure VIII.3 – Counterexample of compositionality

Let us now compose sequentially iut1 with iut2 and spec1 with spec2, but first let us recall the feedback
operator over the synchronous sequential interface I = ( f , πi, πo) defined in Chapter V, Section 2.1.
Then, I = ( f , πi, πo) is the feedback interface defined for every (i, i′) ∈ In1 × In2 and (o, o′) ∈ Out1 ×
Out2 as follows:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

Now, using the cartesian product and the feedback operator over the synchronous sequential interface
I = ( f , πi, πo) defined above, the global implementation iut =	I (⊗(iut1, iut2)) can do the trace
〈i1|o3, i2|o5〉. Thus, o5 ∈ Out(iut after (〈i1|o3〉, i2)) whereas the global specification spec =	I
(⊗(spec1, spec2)) can do the trace 〈i1|o3〉 in such a way o5 6∈ Out(spec after (〈i1|o3〉, i2)). Hence,
we can see that iut does not conform to spec according to cioco.

This counterexample shows that the feedback operators may give rise to a global imple-
mentation that does not conform to its global specification, even if the local implementations
conform to their local specifications. This is because the conformance relation cioco does not put
any constraint on the traces that are not specified in the specification. It allows implementations
to do what they want with the unspecified states. Observe that if the specification specifies for
any input what the allowed outputs are, then we do not have this problem. Hence, to cope with
this problem, we assume that specifications are input-enabled as in [31]. That is to say, all states
of a specification spec accept all input actions of spec, and for each state s of spec and each input
the function α is defined (α is a total function). Then, we have the following theorem for the
compositionality for our feedback operators:

Theorm 1.2 Let H = T(Out× )In be a signature. Let I = ( f , πi, πo) be a relaxed feedback interface.
Let Cj = (Sj, αj) ∈ Comp(H) such that each Cj are input-enabled for every j = 1, 2. Then, we have:

C1 cioco C2 =⇒←↩I(C1) cioco ←↩I(C2) (VIII.1)



162 Chapter VIII Integration Testing

C1 cioco C2 =⇒ 	I(C1) cioco 	I(C2) (VIII.2)

Proof We first need to prove the following lemma:

Lemma 1.1 Consider two components C1 and C2, then we have:

1. Trace(C1) ⊆ Trace(C2) implies (C1 cioco C2)

2. If C2 is input-enabled, then (C1 cioco C2) implies Trace(C1) ⊆ Trace(C2).

Proof

1. Let tr = 〈i1|o1, . . . , in|on〉 be a finite trace of C2, i an input of C2 and o ∈ Out(C1 after (tr, i))
and let us prove that o ∈ Out(C2 after (tr, i)).

o ∈ Out(C1 after (tr, i)) implies tr′ = tr.〈i|o〉 = 〈i1|o1, i2|o2, . . . , in|on, i|o〉 ∈ Trace(C1). Since
Trace(C1) ⊆ Trace(C2), then tr′ ∈ Trace(C2). Thus, o ∈ Out(C2 after (tr, i)), and consequently,

Out(C1 after (tr, i)) ⊆ Out(C2 after (tr, i))

The result then follows from the definition of cioco.

2. By induction on the structure of a trace tr of C1. Let tr = 〈i1|o1, . . . , in|on〉 ∈ Trace(C1).

• Basic Step: tr = 〈〉 is empty trace.

tr = 〈〉 ∈ Trace(C2) trivially holds.

• Induction Step: Let us write tr as concatenation of two finite traces as follows:

tr = 〈i1|o1, i2|o2, . . . , in−1|on−1〉 · 〈in|on〉

tr ∈ Trace(C1) implies on ∈ Out(C1 after (〈i1|o1, . . . , in−1|on−1〉, in)). Since C2 is input-
enabled, in is inevitably an input of C2 at any state s. By induction hypothesis, we have

〈i1|o1, . . . , in−1|on−1〉 ∈ Trace(C2) and on ∈ Out(C1 after (〈i1|o1, . . . , in−1|on−1〉, in))

then on ∈ Out(C2 after (〈i1|o1, . . . , in−1|on−1〉, in)) because C1 cioco C2.

Thus 〈i1|o1, . . . , in−1|on−1, in|on〉 ∈ Trace(C2). Consequently, Trace(C1) ⊆ Trace(C2).

End

Let us now prove the first point of Theorem 1.2. According to Lemma 1.1, we have to prove:

Trace(C1) ⊆ Trace(C2) =⇒ Trace(←↩I(C1)) ⊆ Trace(←↩I(C2))

For this, let us use the proof by induction on the length of a finite trace tr of Trace(←↩I (C1)). Let
tr = 〈i0|o0, . . . , in|on〉 be a finite trace of←↩I(C1).

• Basic Step: tr = 〈〉 is empty trace.

tr = 〈〉 ∈ Trace(←↩I(C2)) trivially holds.



1 - Compositional testing 163

• Induction Step: Let us write tr as concatenation of two finite traces as follows:

tr = 〈i0|o0, i1|o1, . . . , in−1|on−1〉 · 〈in|on〉

tr ∈ Trace(←↩I (C1)) implies, according to the relaxed feedback definition (see Chapter V, Defi-
nition 1.3), that there exists an input sequence x and a couple (x̄, yx̄) inductively defined from a
finite sequence of states (s0, s1, . . . , sn) of S1 as follows:

– x̄(0) = x(0) and yx̄(0) ∈ η′Out×S1
(α1(s0)(x(0)))|1

– ∀j, 0 < j ≤ n, x̄(j) = f (x(j), yx̄(j − 1)), yx̄(j) ∈ η′Out×S1
(α1(sj)(x̄(j)))|1 and sj ∈

η′Out1×S1
(α1(sj−1)(x̄(j− 1)))|2

and ∀j, 0 ≤ j ≤ n, πi(x̄(j)) = ij and πo(yx̄(j)) = oj.

By induction hypothesis,

〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(←↩I(C2)) because 〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(←↩I(C1))

Then, similarly to the above, there exists an input sequence x′ and a couple (x̄′, yx̄′) inductively
defined from a finite sequence of states (s′0, s′1, . . . , s′n) of S2 as follows:

– x̄′(0) = x′(0) and yx̄′(0) ∈ η′Out×S2
(α2(s′0)(x′(0)))|1

– ∀j, 0 < j ≤ n − 1, x̄′(j) = f (x′(j), yx̄′(j − 1)), yx̄′(j) ∈ η′Out×S2
(α2(s′j)(x̄′(j)))|1 and

s′j ∈ η′Out×S2
(α2(s′j−1)(x̄′(j− 1)))|2

and ∀j, 0 ≤ j ≤ n− 1, πi(x̄′(j)) = ij and πo(yx̄′(j)) = oj.

Since Trace(C1) ⊆ Trace(C2), 〈i0, . . . , in〉 is inevitably an input sequence of C2.

Then, η′Out×S2
(α2(s′n)( f (in, yx̄′(n− 1)))|1 is well defined.

Now, we know that

η′Out×S1
(α1(sn)( f (x(n), yx̄(n− 1))))|1 ⊆ η′Out×S2

(α2(s′n)( f (in, yx̄′(n− 1)))|1

This is because Trace(C1) ⊆ Trace(C2). This implies that

yx̄(n) ∈ η′Out×S2
(α2(s′n)( f (in, yx̄′(n− 1))))|1

Hence according to the relaxed feedback definition, 〈i1|o1, . . . , in−1|on−1, in|on〉 ∈ Trace(←↩I
(C2)). Consequently, Trace(←↩I(C1)) ⊆ Trace(←↩I(C2)).

Let us now prove the second point of Theorem 1.2. According to Lemma 1.1, we have to prove:

Trace(C1) ⊆ Trace(C2) =⇒ Trace(	I(C1)) ⊆ Trace(	I(C2))

For this, let us use the proof by induction on the length of a finite trace tr of Trace(	I(C1)).
Let tr = 〈i0|o0, . . . , in|on〉 be a finite trace of 	I(C1).

• Basic Step: tr = 〈〉 is empty trace.

tr = 〈〉 ∈ Trace(	I(C2)) trivially holds.



164 Chapter VIII Integration Testing

• Induction Step: Let us write tr as concatenation of two finite traces as follows:

tr = 〈i0|o0, i1|o1, . . . , in−1|on−1〉 · 〈in|on〉

tr ∈ Trace(	I (C1)) implies, according to the synchronous feedback definition (see Chapter V,
Definition 1.5), that there exists an input sequence x, an output sequence y and a finite sequence
of states (s0, s1, . . . , sn) of S1 such that:

∀j, 0 ≤ j ≤ n, (y(j), sj+1) ∈ η′Out1×S1
(α1(sj)( f (x(j), y(j))))

and ∀j, 0 ≤ j ≤ n, πi(x(j)) = ij and πo(y(j)) = oj.

By induction hypothesis,

〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(	I(C2)) because 〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(	I(C1))

Then, similarly to the above, there exists an input sequence x′, an output sequence y′ and a finite
sequence of states (s′0, s′1, . . . , s′n) of S2 such that:

∀j, 0 ≤ j ≤ n, (y′(j), s′j+1) ∈ η′Out2×S2
(α2(s′j)( f (x(j)′, y(j)′)))

and ∀j, 0 ≤ j ≤ n− 1, πi(x(j)′) = ij and πo(y(j)′) = oj.

Since Trace(C1) ⊆ Trace(C2), 〈i0, . . . , in〉 is inevitably an input sequence of C2. Then,

η′Out2×S2
(α2(s′n)( f (in, y(n)))|1 is well defined

Now, since Trace(C1) ⊆ Trace(C2), we have that:

η′Out1×S1
(α1(sn)( f (x(n), y(n))))|1 ⊆ η′Out2×S2

(α2(s′n)( f (in, y(n)′))|1

Thus, y(n) ∈ η′Out2×S2
(α2(s′n)( f (in, y(n))))|1 . Hence according to synchronous feedback defini-

tion, 〈i1|o1, . . . , in|on〉 ∈ Trace(	I(C2)). Consequently, Trace(	I(C1)) ⊆ Trace(	I(C2)).

End

1.4 Compositionality for complex operator

Theorem 1.1 and Theorem 1.2 obviously lead to the following theorem:

Theorm 1.3 Let op be a complex operator of arity n. Let C1, . . . , Cn, C ′1, . . . , C ′n be components such
that:

∀i, 1 ≤ i ≤ n, Ci cioco C ′i , then one has op(C1, . . . , Cn) cioco op(C ′1, . . . , C ′n).

Proof By induction on the the structure of the complex operator op d’arity n.

• Basic Step:

op is of the form . The property mentioned in Theorem 1.3 trivially holds.



1 - Compositional testing 165

• Induction Step: we distinguish the following cases:

1. op = ⊗(op1, op2) with arity of op1 is n1, arity of op2 is n2 and n1 + n2 = n

by induction hypothesis and the definition of both op1 and op2, we have:

(1) op1(C1, . . . , Cn1) cioco op1(C ′1, . . . , C ′n1
)

and both op1(C1, . . . , Cn1) and op1(C ′1, . . . , C ′n1
) are components;

(2) op2(Cn1+1, . . . , Cn) cioco op2(C ′n1+1, . . . , C ′n)
and both op2(Cn1+1, . . . , Cn) and op2(C ′n1+1, . . . , C ′n) are components.

Then, (1) + (2) + Theorem 1.1 implies that

op = ⊗(op1(C1, . . . , Cn1), op2(Cn1+1, . . . , Cn))

cioco

op = ⊗(op1(C ′1, . . . , C ′n1
), op2(C ′n1+1, . . . , C ′n))

2. op =	I (op′) by induction hypothesis and the definition of op′, we have:

(∗) op′(C1, . . . , Cn) cioco op′(C ′1, . . . , C ′n) and both op′(C1, . . . , Cn) and op′(C ′1, . . . , C ′n) are
components;

Then, (∗) + Theorem 1.2 implies that

op =	I(op′(C1, . . . , Cn)) cioco op =	I(op′(C ′1, . . . , C ′n))

3. op =←↩I (op′) by induction hypothesis and the definition of op′, we have:

(∗) op′(C1, . . . , Cn) cioco op′(C ′1, . . . , C ′n) and both op′(C1, . . . , Cn) and op′(C ′1, . . . , C ′n) are
components;

Then, (∗) + Theorem 1.2 implies that

op =←↩I(op′(C1, . . . , Cn)) cioco op =←↩I(op′(C ′1, . . . , C ′n))

End

By Theorem 1.3, we directly have that sequential, double sequential, synchronous parallel
and concurrent compositions as well as synchronous product are compositional for cioco.

Example 1.3 (Continue Example 1.1) As an example of compositional testing, we have considered in
Example 1.1 the moneyM and drink D components, where we have also shown that iutM cioco specM
and iutD cioco specD . Here, the question is

if �(iutM, iutD) cioco � (specM, specD)?

Our first attempt to answer this question is to check if the assumptions imposed in Theorem 1.3 are
satisfied. Observe that neither specM nor specD are input-enabled. Hence, Theorem 1.3 fails to hold
the compositinality of cioco for the components M and D. However, it is easy to see that the global
implementation iut = �(iutM, iutD) can do the trace

tr = 〈coinC|preparing, abs|coffee, coinC|preparing, abs|refund〉

Thus,

refund ∈ Out(iut after (〈coinC|preparing, abs|coffee, coinC|preparing〉, abs))



166 Chapter VIII Integration Testing

whereas the global specification spec = �(specM, specD) can also do the trace

〈coinC|preparing, abs|coffee, coinC|preparing〉

in such a way

refund 6∈ Out(spec after (〈coinC|preparing, abs|coffee, coinC|preparing〉, abs))

Hence, we can see that iut does not conform to spec according to cioco.

2 Test purposes for sub-systems

In this section, we propose an approach to testing components that are typically involved in
the whole system by defining dedicated test purposes for them, from the global behaviour of
the whole system. Such test purposes are given in an accurate way by defining a projection
mechanism taking a global behaviour p of the whole system and keeping only the part of p
being activated in the sub-system that we want to test. Thus, our method for generating test
purposes from the global system specification helps to generate good relevant unit test cases to
test individual components.

The objective of the approach we propose here is to make component testing more efficient
by focusing on the way components are used in global systems. Indeed, as the number of
test case combinations is often huge, testing components in isolation would cause test cases
important for the global system to be overlooked. As an illustration, let us consider an over
simplified system that computes grade averages.

graphical interface calculator
makeOperation

RequestOperation response

A typical design view of this system consists of two sub-systems:

• an "user interface" I that helps the user to make various operations on grades;

• a "calculator" C that receives operation commands from the user, performs the requested
operation, and reports back to the user.

Now, testing the component C separately may lead to the consideration of test cases involving
arithmetic operations which are irrelevant to computing student grade averages as subtraction,
multiplication, square root, etc. This may cause test cases of interest to the system to be missed,
i.e. test cases only bringing into play addition and division for grades ranging from 0 to 20.
Then, by making a projection of this behaviour on calculator component C, we intend to gener-
ate a test purpose that guides the test derivation process of C by only testing operations needed
to compute grade averages.



2 - Test purposes for sub-systems 167

We show here how a trace of a system can be projected on its components. Such projected
traces will be the cornerstone to define test purposes dedicated to test components separately.
Hence, those test purposes will capture behaviours of sub-systems that typically occur in the
whole system. This will be done by combining projection mechanisms and execution mecha-
nisms to generate system computation trees.

2.1 Sub-systems and projection

We introduce the definition of a sub-system involved in a given system. This intuitively allows
us to characterize the set of all basic sub-systems from which the global system can be built.

Definition 2.1 (Sub-systems) Let S = op(C1, . . . , Cn) be a system over a signature H. The set of
sub-systems of S , noted Sub(S), is inductively defined on the structure of op as follows:

• if op = , then Sub(S) = {S};

• if op = op1 ⊗ op2 with op1 and op2 of arity n1 and n2 respectively (i.e. n = n1 + n2), then
Sub(S) = {S} ∪ Sub(op1(C1, . . . , Cn1)) ∪ Sub(op2(Cn1+1, . . . , Cn));

• if op =	I(op′), then Sub(S) = {S} ∪ Sub(op′(C1, . . . , Cn));

• if op =←↩I(op′), then Sub(S) = {S} ∪ Sub(op′(C1, . . . , Cn)).

For any finite trace tr of a finite computation tree of S and a sub-system sys of S , we charac-
terize the set of finite traces tr↓sys of sys involved in tr.

Definition 2.2 (Projection of a finite trace) Let S = op(C1, . . . , Cn) be a system over a signature
H = T(Out× )In. Let sub ∈ Sub(S) be a sub-system of S over H′ = T(Out′ × )In′ . Let tr =

〈i1|o1, i2|o2, . . . , im|om〉 ∈ Trace(S). The projection of tr on sub, denoted by tr↓sub
, is the subset of

Trace(sub) inductively defined as follows:

• if op = , then tr↓sub
= {tr};

• if op = op1 ⊗ op2 with op1 and op2 of arity n1 and n2 respectively (i.e. n = n1 + n2), then5:

tr↓sub
=



is the projection of 〈i1|1 |o1|1 , i2|1 |o2|1 , . . . , im |1 |om |1〉
on sub if sub ∈ Sub(op(C1, . . . , Cn1))

is the projection of 〈i1|2 |o1|2 , i2|2 |o2|2 , . . . , im |2 |om |2〉
on sub otherwise

• if op =	I (op′) with I = ( f , πi, πo), then tr↓sub
=

⋃
tr′∈tr↓S′

tr′↓sub
where S ′ = op′(C1, . . . , Cn)

and

tr↓S′ =
{
〈i′1|o′1, . . . , i′m|o′m〉 | ∀j, 1 ≤ j ≤ m,

∃sj ∈ S′, o′j ∈ η′Out′×S′(αS ′(sj)( f (i′j, o′j)))|1

ij = πi(i′j) and oj = πo(o′j)
}

5a|i is the projection of the n-tuple a on ith argument.



168 Chapter VIII Integration Testing

2.2 System-based test purposes

In this subsection, we adapt the notion of test purpose presented in Chapter VII, Section 3 to
test, from a global behaviour of a system, the behaviour of its involved sub-systems and then
we guide the component testing intelligently by taking into account the way components are
used in systems. Thus, taking a behaviour p of a system S , we intend to define test purposes
that are able to test the behaviour pi of each sub-system Si ∈ Sub(S). We identify therefore for
each sub-system all its finite paths that are involved in constructing the whole behaviour of S .

We first define the finite computation tree of a subsystem sub of a global system S which
captures all its finite traces:

Definition 2.3 (Finite computation tree) Let S be a system over T(Out× )In. Let sub ∈ Sub(S) be
a subsystem of S over T(Out′ × )In′ . The finite computation tree of sub generated by S of depth
less than n, noted FCT(sub, n) is the coalgebra (SFCT , s0

FCT , αFCT) defined by:

• s0
FCT = 〈〉

• SFCT is the whole set of finite traces defined as follows:

– s0 = {〈〉}

– ∀j, 1 ≤ j ≤ n, sj= {tr′.〈i|o〉 | ∃tr′ ∈ sj−1, ∃i ∈ In′, ∃o ∈ Out′, ∃tr ∈ Trace(S)
such that tr′.〈i|o〉 ∈ tr↓sub

}

Hence, SFCT =
⋃

0≤j≤n
si

• αFCT : SFCT × In′ −→ T(Out′ × SFCT) is the mapping which for every 〈i0|o0, . . . , im|om〉 ∈
SFCT and every input i ∈ In′ associates η′−1

Out′×SFCT
(Π) where Π is the set:

Π = {(o, 〈i0|o0, . . . , im|om, i|o〉) | ∃o ∈ Out′, ∃tr ∈ Trace(S) such that
〈i0|o0, . . . , im|om, i|o〉 ∈ tr↓sub

}

In this definition, SFCT is the set of the nodes of the tree. s0
FCT is the root of the tree. Each node

is represented by the unique finite trace 〈i0|o0, . . . , im|om〉 (m ≤ n). αFCT gives, for each node p
and for each input i, the set of nodes Π that can be reached from p when the input i is submitted
to the component.

〈〉

〈i0|o0〉

〈ik |ok〉

...

. . .

. . .

...

〈i0|o0, . . . , i1m |o1m〉

〈i0|o0, . . . , im′m |om′m〉

〈i0|o0, . . . , ikm |okm〉

〈i0|o0, . . . , ik′m′ |ok′m′ 〉

...

i0|o0

ik |ok

i1m |o1m

ikm |okm

im′m |om′m

ik′m′ |ok′m′



2 - Test purposes for sub-systems 169

Definition 2.4 (Test Purpose) Let S be a system over a signature H = T(Out × )In. Let sub ∈
Sub(S) be a sub-system of S over H′ = T(Out′ × )In′ and FCT(sub, n) = (S, s0, α) its finite compu-
tation tree generated by S . Let tr be a finite trace of S such that its length is less than n. Let tr↓sub

be the
projection of tr on sub. A test purpose TP for tr and sub is a mapping TP : SFCT −→ {accept, skip,�}
such that:

• for every node p = 〈i0|o0, . . . , im|om〉 ∈ tr↓sub
, TP(p) = accept;

• if TP(〈i0|o0, . . . , im|om〉) = accept, then:

∀j, 0 ≤ j ≤ m, TP(〈i0|o0, . . . , ij−1|oj−1〉) = skip

• TP(〈〉) = skip

• if TP(〈i0|o0, . . . , ik|ok〉) = �, then:

TP(i0|o0, . . . , ik|ok, i′k+1|o
′
k+1, . . . , i′k′ |o

′
k′〉) = �

for all k < k′ ≤ n and for all (i′l)k≤l<n ∈ In′ and (o′l)k≤l<n ∈ Out′.

In order to build a test purpose for a finite behaviour projection tr↓sub
on a sub-system sub,

we identify all finite paths of its finite computation tree FCT whose traces embody tr↓sub
and

we tag them with accept. We then tag every node which represents a prefix of an accepted
behaviour with skip. The other nodes, which lead to behaviours that we do not want to test, are
tagged with �.

Example 2.1 Let us consider a finite trace

tr = 〈coinC|preparing, abs|coffee, coinC|preparing, abs|coffee, coinC|preparing, abs|coffee〉

of the coffee machine obtained by a synchronous parallel composition of the money componentM and the
drink componentD whose specifications are illustrated in Figure VIII.2a and Figure VIII.2b respectively,
and then, from it, build a test purpose dedicated to test the behaviour of the drink component D.

First, we build the finite computation FCT(D, 6) tree of D generated by �(specM, specD) that we
represent in Figure VIII.4. Second, we compute the projection of tr on D

tr↓D = {〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing, abs|coffee〉}

This corresponds intuitively to three requests for making coffee to the component drink D without any
error occurring. A test purpose TP for this behaviour would then concentrate on the delivering of coffee
and ignore the behaviours ofD related both to errors whenD fails and to tea delivering. Hence, each state
of FCT(D, 6) reachable after tr↓D is tagged with accept. Then, p15 is only tagged with accept because
it is the unique leaf which corresponds to an expected behaviour. All nodes leading from the root p0 to
this node p15 are tagged with skip (i.e p0, p1, p3, p5, p8 and p11). Finally, all other states are tagged with
�.
Thus, testing of D is re-enforced as far as the coffee delivering is concerned: only behaviours related to
correct coffee delivering process are chosen and then sub-system behaviours that are not activated in the
global system are not tested. This allows us to restrict the test domain to the one under consideration.



170 Chapter VIII Integration Testing

p0

p2p1

makeC|preparing makeT|preparing

p3 p4

abs|coffee
abs|error

abs|tea abs |error

p5 p6 p7

makeC|preparing
makeT |preparing

makeC,makeT

p8 p9 p10

abs|coffee abs |error
abs|tea abs |error abs |error

p11 p12
p13 p14

makeC|preparing makeT |preparing
makeC,makeT makeC,makeT

p15 p16 p17 p18
p19 p20

abs|coffee abs |error abs|tea abs |error abs |error abs |error

skip

skip �

skip
�

skip �
�

skip �
�

skip �
� �

accept � � �
� �

p0 = 〈〉
p1 = 〈makeC|preparing〉
p2 = 〈makeT|preparing〉
p3 = 〈makeC|preparing, abs|coffee〉
p4 = 〈makeC|preparing, abs|error〉
p5 = 〈makeC|preparing, abs|coffee, makeC|preparing〉
p6 = 〈makeC|preparing, abs|coffee, makeT|preparing〉
p7 = 〈makeC|preparing, abs|error, {makeC, makeT}〉
p8 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee〉
p9 = 〈makeC|preparing, abs|error, makeC|preparing, abs|error〉
p10 = 〈makeC|preparing, abs|error, {makeC, makeT}, abs|error〉
p11 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing〉
p12 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeT|preparing〉
p13 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|error, {makeC, makeT}〉
p14 = 〈makeC|preparing, abs|error, {makeC, makeT}, abs|error, {makeC, makeT}〉
p15 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing, abs|coffee〉
p16 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeC|preparing, abs|error〉
p17 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|error, makeT|preparing, abs|tea〉
p18 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|coffee, makeT|preparing, abs|error〉
p19 = 〈makeC|preparing, abs|coffee, makeC|preparing, abs|error, {makeC, makeT}, abs|error〉
p20 = 〈makeC|preparing, abs|error, {makeC, makeT}, abs|error, {makeC, makeT}, abs|error〉

Figure VIII.4 – Test purpose of the drink component



3 - Related works 171

3 Related works

In this section, we present a brief overview of contributions which are technically close to our
proposal, but which focus on various aspects of compositional testing, as well as on component-
based ones. We discuss the differences between problematics addressed by those contributions
and those addressed by our approach.

The component-based systems testing framework proposed in [31] is closer technically to
our compositional testing approach. In this paper, the authors address compositionality for ioco
conformance relation. Both specification and implementation component models are consid-
ered as LTSs. Parallel composition and hiding operators are used to combine LTS models. The
parallel composition of two LTSs S1 and S2 consists in synchronizing their actions: when both
S1 and S2 are ready to engage in the same action a, there is a transition in the composed LTS
which carries the action a; when one of them is ready to engage in an action not shared with the
other one, it may evolve independently and the reaction of the composed LTS consists only of
the reaction of the LTS that reacts. The hiding operator consists in hiding the common or syn-
chronized actions by replacing them by an internal action τ, and then restricting observability
of internal actions. It has been proved that the conformance testing ioco is only compositional
with respect to parallel composition and hiding when specifications and implementations are
assumed input-enabled.

Among the works concerning compositional testing as it was defined in [31] and which
were adopted in our framework, we can mention the work proposed by Sampaio in [136]. In
this paper the authors extend the testing theory defined in the setting of CSP process algebra
whose conformance relation cspio is an adapted version of ioco to CSP formalism [132], to be
able to address compositional testing proposed by Tretmans in [31]. Indeed, it has been shown
that cspio is compositional not only for parallel composition ‖ and hiding operator / but also
for other CSP’s composition operators such that deterministic and nondeterministic choices, by
assuming that input completeness of the specification is in the same alphabet of the implemen-
tation.

In [49], the authors propose to test each component of a system in isolation by generating
accurate test purposes for them from the global specification of the system and assuming that
the specification of every component in the system is available. They use the input-output sym-
bolic transition systems (IOSTS) as the behavioural model of components and both synchro-
nized product and hiding operator in order to compose components. Then, the authors propose
to derive test purposes for a given component C of the system S from a global behaviour of S .
This is done by defining an adequate projection mechanism that allows them to project sym-
bolic behaviour of S on its components. Those projected behaviours are then considered good
behaviours to be tested on sub-systems. Thus, they are used to build test purposes.

In [86, 87], Petrenko and al. see the compositional testing problem differently from our ap-
proach and those presented in [31, 136]. They address the following question: "how to design
a component that when combined with a known part of the system, called the context, has to satisfy a
given overall specification?" To answer this question, the authors of [86, 87] specify the behaviour
of components as finite state machines and the interactions between components by means of
two operators: synchronous composition and parallel composition (or asynchronous composi-
tion). Then, they associate a class of languages to finite state machines that allow them to define
equations over languages. Such a behaviour modeling is made to be the cornerstone of testing
complex systems in context. In this setting, the above question is expressed formally by the
following equation over FSM languages

(C op X) rel spec



172 Chapter VIII Integration Testing

where C models the context, spec models the global specification, X is unknown, op stands for
a composition operator and rel for a conformance relation. It has been proved that the largest
solution of this language equation is given by the language S = C op spec when op stands for
both parallel composition or synchronous composition and rel stands for languages inclusion
⊆. As previously mentioned, finite state machines and operators used to compose them can be
defined in our framework. Then, to extend their results to our framework, it still need to define
a class of languages accepted by Barbosa’s components. To do that, we can take advantage of
the work done in [137] that generalize the classical notion of regular expression to coalgebras
over polynomial functors.

In [138], the authors extend the so-called assume-guarantee reasoning [29] used in model
checking areas as a means to cope with the state explosion problem of compositional testing.
They then proposed to test each component of a system separately, while taking into account
assumptions about the context of the component. They use the input-output labeled transition
systems as behavioural models of components and the parallel composition ‖ to compose com-
ponents. The conformance relation used in this approach is the ioco relation. The underlying
idea behind this approach is to check that, given a assumption A about the environment in
which the components are supposed to operate, such that iut2 ioco A and (iut1 ‖ A) ioco spec
then (iut1 ‖ iut2) ioco spec. The authors showed that this property holds if the assumption A is
input-enabled. This approach then requires the specification spec to be given as a single model
rather than a set of components unlike our approach. They do not impose input-completeness
of specifications which gives them an advantage with respect to our result.



Chapter IX

Conclusion

1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

In this chapter, we conclude this thesis by describing the main objectives of the work, the
goals we have achieved and the direction of future work.

1 Summary

Building correct systems has been the most difficult challenge for engineers and still continues
to be so nowadays, due to the fact of growing system complexity and size. In this thesis, we
explained the importance of component-based models to meet this challenge, and proposed an
unified framework for both modeling and reasoning about the correctness of component-based
systems formally. Hence, this thesis has been placed in the area of both modeling and testing of
component-based systems.

We then defined a formalism based on Barbosa’s component definition [9, 32]. For this for-
malism, a trace semantics from causal functions was proposed as is usually done in control the-
ory and dynamic systems design. The resulting formalism is then generic enough to subsume a
large family of state-based formalisms. A number of theoretical results were also obtained. First,
in order to deal with large systems, we defined the notion of an integration operator as the com-
position of two basic operators: the product and feedback. We then showed the generic results
of compositionality independently of a given integration operator. We also obtained results re-
lated to the construction of a final object in the category of components. Taking advantage of
the genericity of the formalism, we then defined both conformance and compositional testing
theories, which by definition can be applied to any formalism instance of our framework.

2 Future research

The main direction of our work can be categorized according to the following:

• The proposed formalism is just an initial proposal of formalism to model complex sys-
tems. For its application in concrete cases, experience is needed in the case of real size



174 Chapter IX Conclusion

systems. Another goal is to give a mathematical framework for a discipline, called sys-
tems engineering, that has been fully tried and tested in the modeling of modern indus-
trial systems, but has not been well-formalized. This will first require that we extend the
formalism to take into account components heterogeneity (software, hardware, human)
which is mainly characterized by how inputs are handled to provide observable outputs
(i.e. discretely or continuously). In the context of B. Golden’s thesis [43], he defines a
formalism which is abstract enough to unify, by using non-standard analysis techniques,
different time treatments of components. On the contrary, systems considered in [43] are
deterministic. The idea is then to try to combine our approach with that of [43].

• In systems engineering, mainly two kinds of operators play a crucial role in defining sys-
tems:

1. Integration operators

2. Abstraction/simulation operators.

The first kind of operators has been widely discussed in this thesis, but not the second.
Both abstraction and simulation operators aim to structure systems at many levels of de-
scription, from the most abstract to the most concrete until realization. These operators are
classically brought together into only one which is similar to the operator of refinement
classically used in software engineering [139, 140].

• It would be interesting to take data and not just values In and Out, into account. In order
to do that, we first have to extend the signature over which components are defined by
data. This would be done by replacing both inputs In and outputs Out sets with data
structure specified using equational and algebraic specifications. This would lead us to
extend our algorithms for test case generation. This extension will naturally be based on
symbolic evaluation techniques as it has been done in [45, 53]. This will also require us to
first extend our conformance relation cioco to sicoco [44].

• It would be interesting to address compositional verification in our framework. In order
to do that, we would first have to define a logic (temporal) under our formalism, and
then establish a certain number of properties on this logic such as defining a calculus and
proving that it is correct and complete, showing that the logic is stable with respect to
bisimulation, studying preservation of properties along integration operators, etc.



List of Figures

I.1 Black box view of a system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.2 Compositional view of complex system . . . . . . . . . . . . . . . . . . . . . . . 3
I.3 Classification of testing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II.1 Examples of categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

III.1 Graphical representation of LTS and LTS′ . . . . . . . . . . . . . . . . . . . . . . 43
III.2 Example of a synchronization tree . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IV.1 Coffee machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
IV.2 ATM component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
IV.3 Pedestrian crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
IV.4 Pedestrian crossing modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
IV.5 Transformation of an IOLTS into a component over P(Out× _)In . . . . . . . . 70
IV.6 Binary Mealy automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V.1 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
V.2 Illustration of a system with feedback . . . . . . . . . . . . . . . . . . . . . . . . 81
V.3 Relaxed feedback composite: ←↩I(C) . . . . . . . . . . . . . . . . . . . . . . . . . 82
V.4 Syracuse’s sequence component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
V.5 Examples of feedback composition . . . . . . . . . . . . . . . . . . . . . . . . . . 87
V.6 Sequential composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
V.7 Double sequential composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
V.8 Extended cartesian product ⊗e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
V.9 Example: illustration of ⊗e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
V.10 Synchronous product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
V.11 Synchronous product: ~((C1, C2)) = Bs(C0, (C1 ⊗ C2)) . . . . . . . . . . . . . . . 95
V.12 Concurrent composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
V.13 Concurrent composition: ⊕((C1, C2)) = Bs(Bs(C0, (C1 ⊗ C2)), C ′0) . . . . . . . . 96
V.14 Synchronous parallel composition . . . . . . . . . . . . . . . . . . . . . . . . . . 97
V.15 Extended concurrent composition ⊕e . . . . . . . . . . . . . . . . . . . . . . . . . 98
V.16 Example: illustration of ⊕e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
V.17 Encoder (on the left) and Decoder (on the right) . . . . . . . . . . . . . . . . . . 100
V.18 Controller system C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
V.19 Gate system G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
V.20 Synchronous product B = ~(G1,G2) of G1 and G2 . . . . . . . . . . . . . . . . . 103
V.21 Sequential composition K = Bs(B,O) of B and O . . . . . . . . . . . . . . . . . 104
V.22 Sequential composition S = Bs(C,K) of C and K . . . . . . . . . . . . . . . . . . 104



176 LIST OF FIGURES

V.23 Model of a crosswalk, to be composed in a synchronous parallel composition
with the traffic light model of Figure IV.4 . . . . . . . . . . . . . . . . . . . . . . 105

V.24 Pedestrian crossing modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
V.25 �(M′,M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
V.26 Level crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
V.27 Controller system C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
V.28 Barrier system B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
V.29 Crossing level global model S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

VI.1 Conformance testing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
VI.2 Relations between IMPS, MODS and SPECS . . . . . . . . . . . . . . . . . . . . . 124

VII.1 Illustration of cioco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
VII.2 Finite computation tree for the coffee machine . . . . . . . . . . . . . . . . . . . 137
VII.3 Example of finite computation tree . . . . . . . . . . . . . . . . . . . . . . . . . . 141
VII.4 Test purposes of the coffee machine . . . . . . . . . . . . . . . . . . . . . . . . . . 143
VII.5 General view of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
VII.6 Communication between the iut and the algorithm . . . . . . . . . . . . . . . . . 146
VII.7 Instantiating of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

VIII.1 Architecture of a coffee machine in components . . . . . . . . . . . . . . . . . . 157
VIII.2 Illustration of cioco’s compositionality . . . . . . . . . . . . . . . . . . . . . . . . 159
VIII.3 Counterexample of compositionality . . . . . . . . . . . . . . . . . . . . . . . . . 161
VIII.4 Test purpose of the drink component . . . . . . . . . . . . . . . . . . . . . . . . . 170



List of Tables

II.1 Examples of categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

III.1 LTS and LTS′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IV.1 The deterministic computational features . . . . . . . . . . . . . . . . . . . . . . . 68
IV.2 The partial computational features . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IV.3 The non-deterministic computational features . . . . . . . . . . . . . . . . . . . . 69

VI.1 Conformance testing elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VII.1 Examples of conformance relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



178 LIST OF TABLES



Bibliography

[1] S. A. Slaughter, D.E. Harter, and M. S. Krishnan. Evaluating the cost of software quality.
Commun. ACM, 41:67–73, August 1998.

[2] C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.

[3] D.F. D’Souza and Al.C. Wills. Objects, Components, and Frameworks with UML: The Cataly-
sis(SM) Approach. Addison-Wesley Professional, October 1998.

[4] H. Jifeng, L. Xiaoshan, and L. Zhiming. Component-based software engineering. In
Dang Van Hung and Martin Wirsing, editors, ICTAC, volume 3722 of Lecture Notes in
Computer Science, pages 70–95. Springer, 2005.

[5] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1):3–
80, October 2000.

[6] B. Jacobs and J. Rutten. A tutorial on coalgebras and coinduction. EATCS Bulletin, 62:222-
259, 1997.

[7] H. Reichel. An approach to object semantics based on terminal co-algebras. Mathematical
Structures in Computer Science, 5(2):129–152, 1995.

[8] B. Jacobs. Objects and classes, co-algebraically. In Object Orientation with Parallelism and
Persistence, pages 83–103, 1995.

[9] L.S. Barbosa. Towards a calculus of state-based software components. Journal of Universal
Computer Science, 9(8):891–909, August 2003.

[10] L.S. Barbosa and J.N. Oliveira. State-based components made generic. Electronic Notes
in Theoretical Computer Science, 82(1):39 – 56, 2003. CMCS’03, Coalgebraic Methods in
Computer Science (Satellite Event for ETAPS 2003).

[11] L.S Barbosa and S. Meng. Generic components. Proceedings of First APPSEM-II Workshp,
March 2003.

[12] L.S Barbosa. Components as processes: An exercise in coalgebraic modeling.
FMOODS2000 - Formal Methods for Open Object-Oriented Distributed Systems, pages 397–
417, Sptembre 2000.

[13] L.S. Barbosa. Components as coalgebras. PhD thesis, Departamento de Informática Escola
de Engenharia Universidade do Minho, 2001.

[14] P. Wadler. Monads for functional programming. In M. Broy, editor, Program Design Calculi,
NATO ASI Series. Springer Verlag, 1993.



180 BIBLIOGRAPHY

[15] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth An-
nual Symposium on Logic in computer science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE
Press.

[16] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1991.

[17] R. Hower. Software quality assurance and testing resource center. 1996-2011. Available
at http://www.softwareqatest.com/.

[18] CNET. 10 great bugs of history. 2000. Available at
http://www.bus.tu.ac.th/usr/angsana/IS301-1-42/Outline/greatbug.htm.

[19] P. Wolper. Verification: Dreams and Reality. Inaugural lecture of the
course "The algorithmic verification of reactive systems", online available at
http://www.montefiore.ulg.ac.be/ pw/cours/francqui.html.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[21] E. M. Clarke and E. A Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, London, UK,
1982. Springer-Verlag.

[22] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar. In
Proceedings of the 5th Colloquium on International Symposium on Programming, pages 337–
351, London, UK, 1982. Springer-Verlag.

[23] G. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY, USA, 1979.

[24] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York, NY,
USA, 1990.

[25] E.W. Dijkstra. Notes on structured programming. pages 1–82, 1972.

[26] Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard Glossary of Software
Engineering Terminology. 1990.

[27] B. Beizer. Black-box testing: techniques for functional testing of software and systems. John
Wiley & Sons, Inc., New York, NY, USA, 1995.

[28] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University of Twente,
Enschede, The Netherlands, 1992.

[29] E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proceedings of
the Fourth Annual Symposium on Logic in computer science, pages 353–362, Piscataway, NJ,
USA, 1989. IEEE Press.

[30] E. Chang, Z. Manna, and A. Pnueli. Compositional verification of real-time systems. In
Proc. 9’th IEEE Symp. On Logic In Computer Science, pages 458–465. IEEE Computer Society
Press, 1994.

[31] H.M. van der Bijl, A. Rensink, and G.J. Tretmans. Compositional testing with ioco. In
A. Petrenko and A. Ulrich, editors, Formal Approaches to Software Testing (FATES), volume
2931 of Lecture Notes in Computer Science, pages 86–100, Berlin, 2004. Springer Verlag.



BIBLIOGRAPHY 181

[32] S. Meng and L.S. Barbosa. Components as coalgebras: the refinement dimension. Theor.
Comput. Sci.(TCS), 351(2):276–294, 2006.

[33] P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, pages
461–493, 1992.

[34] S. Eilenberg. Automata, Languages and Machines, volume C. Academic Press, New York,
1978.

[35] G. H. Mealy. A method for synthesizing sequentiel circuits. Bell Systems Techn. Jour., 1955.

[36] R. Milner. A calculus of communicating systems. Springer-Verlag New York, Inc, secaucus,
NG, USA, 1982.

[37] S. Brookes and A. W. Roscoe. An Improved Failures Model for Communicating Processes.
NSF-SERC Seminar on Concurrency, Pittsburgh, July 1984. Springer Lecture Notes in Computer
Science(LNCS) 197., pages 281–305, 1985.

[38] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2:219–246, 1989.

[39] M. Phalippou. Relations d’implementation et hypothèses de test sur des automates à entrées et à
sorties. Thesis, Université de Bordeaux I, Septembre 1994.

[40] T. Jéron C. Jard. TGV: theory, principles and algorithms. International Journal on Software
Tools for Technology Transfer, 7(4):297–315, August 2005.

[41] J. Tretmans. Conformance testing with labelled transition systems : Implementation rela-
tions and test generation. Computer networkss and ISDN systems, 29(1):49–79, 1996.

[42] J. Rutten. Algebraic specification and coalgebraic synthesis of mealy machines. Technical
Report SEN-R0514, Centrum voor Wiskunde en Informatica (CWI), 2005.

[43] M. Aiguier, B. Golden, and D. Krob. Modeling of complex systems: A mini-
malist and unified semantics for heterogeneous integrated systems. Technical re-
port, 2011. Submitted to the journal "Applied Mathematics and Computation" - Available at
http://www.lix.polytechnique/fr/golden/., 2011.

[44] L. Frantzen, J. Tretmans, and T.A.C. Willemse. A Symbolic Framework for Model-Based
Testing. In K. Havelund, M. Núñez, G. Rosu, and B. Wolff, editors, Formal Approaches to
Software Testing and Runtime Verification – FATES/RV 2006, number 4262 in Lecture Notes
in Computer Science, pages 40–54. Springer, 2006.

[45] C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic execution techniques for test
purpose definition. In M. Uyar, A.Y. Duale, and M..A. Fecko, editors, TestCom, volume
3964 of LNCS, pages 1–18. Springer, 2006.

[46] J. Tretmans. Testing labeled transition systems with inputs and outputs. In The 8th Inter-
national Workshop on Protocol Test Systems, pages 461–476, Ervy, France., 1995. In Cavalli,
A. and Budkowski, S., editors,.

[47] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software -
Concepts and Tools, 17(3):103–120, 1996.

[48] V. Rusu, L.d. Bousquet, and T. Jéron. An approach to symbolic test generation. In IFM
’00: Proceedings of the Second International Conference on Integrated Formal Methods, pages
338–357, London, UK, 2000. Springer-Verlag.



182 BIBLIOGRAPHY

[49] A. Faivre, C. Gaston, and P. Le Gall. Symbolic model based testing for component ori-
ented systems. In A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp, editors, Test-
Com/FATES, volume 4581 of Lecture Notes in Computer Science, pages 90–106. Springer,
2007.

[50] ISO. Information technology, Open Systems Interconnection. International standard IS 9646,
ISO, Geneve, 1991.

[51] ISO/IEC JTC1/SC21 N6201. Information Retrieval, Transfer and Management for OSI, Formal
Methods in Conformance Testing, working draft. Project 1.21.54 (Arles ouput). ISO, June 1991.

[52] ISO/IEC. ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8.Proposed ITU-T Z.500 and Committee
Draft on Formal Methods in Conformance Testing. CD 13245-1. ISO -ITU-T, Geneve, 1996.

[53] A. Touil. Exécution symbolique pour le test de conformité et le test de raffinement. Doc-
torat de l’université EVRY-VAL-d’ESSONNE, 6 décembre 2006.

[54] B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observations. Book
draft, 2005.

[55] D. Pattinson. An introduction to the theory of coalgebras, 2003. Lecture Notes, Second
North American Summer School on Logic, Language and Information.

[56] H.P Gumm. Elements of the general theory of coalgebras. Notes of lectures given at LU-
ATCS’99:Logic, Universal Algebra, Theoretical Computer Science, Johannesburg, 1999.

[57] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Math-
ematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.

[58] M. Barr and C. Wells, editors. Category theory for computing science, 2nd ed. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK, 1995.

[59] E.G. Manes. Algebraic theories. 26 of Graduate Texts in Mathematics, 1976.

[60] M. Arbib and E. Manes. Machines in a category. Journal of Pure and Applied Algebra, 19:9–
20, 1980.

[61] M. Arbib E. Manes. Algebraic approaches to program semantics. Springer-Verlag New York,
Inc., New York, NY, USA, 1986.

[62] P. Aczel. Non-Well-Founded Sets. CSLI, Stanford, CA, 1988.

[63] P. Aczel. Final universes of processes. Mathematical Foundations of Programming Semantics,
802:1–28, 1994.

[64] G. D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus University, Aarhus, 1981.

[65] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines—a
survey. Proceedings of the IEEE, 84(8), August 1996.

[66] A. Arnold and M. Nivat. Comportements de processus. In Colloque AFCET, Les mathéma-
tiques de l’Informatique, 1982.

[67] T. Jéron. Contribution à la génération automatique de tests pour les systèmes réactifs. Habilita-
tion à diriger les recherches, Université de Rennes 1, March 2004.



BIBLIOGRAPHY 183

[68] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

[69] J. Rutten and D. Turi. On the foundations of final semantics: Non-standard sets, metric
spaces, partial orders. In Proceedings of the rex workshop on semantics: foundations and ap-
plications, volume 666 of lecture notes in Computer Science, pages 477–530. Springer-Verlag,
1998.

[70] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM J. Comput., 11(4):761–783, 1982.

[71] J. Worrell. On the final sequence of a finitary set functor. Theor. Comput. Sci., 338(1-3):184–
199, 2005.

[72] P. Aczel and N.P. Mendler. A final coalgebra theorem. In Category Theory and Computer
Science, pages 357–365, London, UK, 1989. Springer-Verlag.

[73] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comput. Sci., 114(2):299–
315, 1993.

[74] H. H. Hansen, D. Costa, and J. J. M. M. Rutten. Synthesis of mealy machines using deriva-
tives. Electr. Notes Theor. Comput. Sci. (ENTCS), 164(1):27–45, 2006.

[75] P.J Cameron. Sets, Logic and categories. Undergraduate Mathematics. Springer, 1999.

[76] D van Dalen, H.C. Doets, and H. de Swart. Sets: Naive, Axiomatic and Applied. Number
106. Pure and applied Math. Pergamum Press, 1978.

[77] G.N Raney. Sequential functions. Journal of the (ACM), 5(2):177–180, April 1958.

[78] H. Wolff. Monads and monoids on symmetric monoidal closed categories. Archiv der
Mathematik, 24:113–120, 1973. 10.1007/BF01228184.

[79] B. Kanso, M. Aiguier, F. Boulanger, and A. Touil. Testing of abstract components. In
A. Cavalcanti, D. Déharbe, M. Gaudel, and J. Woodcock, editors, ICTAC, volume 6255 of
Lecture Notes in Computer Science, pages 184–198. Springer, 2010.

[80] E.D. Sontag. Mathematical control theory: deterministic finite dimensional systems (2nd ed.).
Springer-Verlag New York, Inc., New York, NY, USA, 1998.

[81] B. Golden M. Aiguier and D. Krob. Modeling of complex systems: A minimalist and
unified semantics for heterogeneous integrated systems. 2011. Technical report, Ecole
Polytechnique, Available at http://www.lix.polytechnique.fr/ golden/.

[82] C. A. R. Hoare and C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21:666–677, 1985.

[83] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.
In Proceedings of the IEEE, pages 1270–1282, 1991.

[84] E.A. Lee and P. Varaiya. Structure and interpretation of signals and systems. Addison-Wesley,
2003.

[85] E.A. Lee and S.A. Seshia. Introduction to Embedded Systems - A Cyber-Physical Systems Ap-
proach. Lee and Seshia, 1 edition, 2010.



184 BIBLIOGRAPHY

[86] N. Yevtushenko, T. Villa, R.K. Brayton, A. Petrenko, and A.L. Sangiovanni-Vincentelli.
Sequential synthesis by language equation solving. In International Workshop on Logic and
Synthesis.

[87] A. Petrenko and N. Yevtushenko. Solving asynchronous equations. In Proceedings of the
FIP TC6 WG6.1 Joint International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE XI) and Protocol Specification, Testing and Ver-
ification (PSTV XVIII), FORTE XI / PSTV XVIII ’98, pages 231–247, Deventer, The Nether-
lands, The Netherlands, 1998. Kluwer, B.V.

[88] C.G. Cassandras and S. Lafortune. Introduction to discrete event systems. SpringerLink
Engineering. Springer Science+Business Media, 2008.

[89] S. Meng and B.K. Aichernig. A coalgebraic calculus for component based systems. In
Proceedings of FACS’03, Workshop on Formal Aspects of Component Software, Satellite Workshop
of the FM, September 2003.

[90] I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concurrency in coal-
gebras, 2007. preprint, available from http://www.cs.ru.nl/ ichiro/papers. I. HASUO, B.
JACOBS, AND A. SOKOLOVA, 2008.

[91] I. Hasuo, C. Heunen, B. Jacobs, and A. Sokolova. Coalgebraic components in a many-
sorted microcosm. In Conference on Algebra and Coalgebra in Computer Science, pages 64–80,
2009.

[92] J. R. Burch, R.Passerone, and A.L. Sangiovanni-vincentelli. Overcoming heterophobia:
Modeling concurrency in heterogeneous systems. In Int. Conf. on Application of Concur-
rency to System Design, 2001.

[93] E.A Lee Jie Liu Xiaojun Liu J. Ludvig S. Neuendorffer S. Sachs J. Eker, J.W. Janneck and
Yuhong Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE,
Special Issue on Modeling and Design of Embedded Software, Volume 91(1), Page(s): 127 - 144,
Jan 2003.

[94] C. Brooks and E.A. Lee. Ptolemy ii - heterogeneous concurrent model-
ing and design in java. February 2010. Poster presented at the 2010,
href="http://www.eecs.berkeley.edu/BEARS" Berkeley EECS Annual Research Sympo-
sium (BEARS).

[95] C. Hardebolle and F. Boulanger. Modhel’x: A component-oriented approach to multi-
formalism modeling. Models in Software Engineering - Workshops and Symposia at MoDELS
2007, Nashville, TN, USA, September 30 - October 5, 2007, Reports and Revised Selected Papers,
5002/2008:247–258, June 2008.

[96] C. Hardebolle and F. Boulanger. Multi-formalism modelling and model execution. Inter-
national Journal of Computers and their Applications (IJCA), 2009.

[97] A. Jantsch. Models of embedded computation. In Embedded systems handbook. CRC Press,
2005.

[98] F. Arbab. Reo: a channel-based coordination model for component composition. Mathe-
matical. Structures in Comp. Sci., 14:329–366, June 2004.



BIBLIOGRAPHY 185

[99] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time systems in BIP. In 4th
IEEE International Conference on Software Engineering and Formal Methods (SEFM06), Pune,
pages 3–12, september 2006.

[100] G. Gößler and J. Sifakis. Composition for component-based modeling. Sci. Comput. Pro-
gram., 55(1-3):161–183, 2005.

[101] F. Arbab, C. Baier, J. J. M. M. Rutten, and M. Sirjani. Modeling Component Connectors In
Reo By Constraint Automata. Science of Computer Programming, 61:75 – 113, 2006.

[102] F. Arbab and J. Rutten. A coinductive calculus of component connectors. In Martin Wirs-
ing, Dirk Pattinson, and Rolf Hennicker, editors, Recent Trends in Algebraic Development
Techniques, volume 2755 of Lecture Notes in Computer Science, pages 34–55. Springer Berlin
/ Heidelberg, 2003.

[103] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Automated test and oracle generation for
smart-card applications. In International Conference on Research in Smart Cards (e-Smart’01),
Volume 2140 of LNCS, pages 58–70, 2001.

[104] H. Kahlouche, C. Viho, and M. Zendri. Hardware testing using a communication protocol
conformance testing tool. In In The International Work-shop on Tools and Algorithms for
Construction and Analysis of Systems. (TACAS ’99), March 1999.

[105] G. Bernot. Testing against formal specifications: A theoretical view. In S. Abramsky and
T. Maibaum, editors, TAPSOFT ’91, volume 494 of Lecture Notes in Computer Science, pages
99–119. Springer Berlin / Heidelberg, 1991.

[106] ISO/IEC. LOTOS-a formal description technique based on the temporal ordering of ob-
servational behaviour. In Technical Report 8807, International Organization for Standards -
Information Processing Systems - Open Sys- tems Interconnection, 1988.

[107] IUT-T. Recommendation Z-100. specification and description language (SDL). In Technical
report, 1994.

[108] L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic specifi-
cations. (3395):1–15, 2005.

[109] G. Bernot. Testing against formal specifications: A theoretical view. In TAPSOFT’91:
Proc. of the Intl. Joint Conference on Theory and Practice of Software Development, Vol. 2, pages
99–119, London, UK, 1991. Springer-Verlag.

[110] J. Tretmans. A formal approach to conformance testing. In Proceedings of the IFIP
TC6/WG6.1 Sixth International Workshop on Protocol Test systems VI, pages 257–276, Am-
sterdam, The Netherlands, 1994. North-Holland Publishing Co.

[111] D. Lee and M. Yannakakis. Testing finite-state machines: State identification and verifica-
tion. IEEE Transactions on Computers, 43:306–320, 1994.

[112] A. Petrenko and N. Yevtushenko. Conformance tests as checking experiments for partial
nondeterministic fsm. In W. Grieskamp and C. Weise, editors, FATES, volume 3997 of
Lecture Notes in Computer Science, pages 118–133. Springer, 2005.

[113] A. Petrenko and N. Yevtushenko. Testing from partial deterministic fsm specifications.
IEEE Trans. Comput., 54:1154–1165, September 2005.



186 BIBLIOGRAPHY

[114] A. Petrenko, R. Petrenko, R. Groz, and S. Boroday. Confirming configurations in efsm
testing. IEEE Transactions on Software Engineering, 30:2004, 2004.

[115] C. Bourhfir, R. Dssouli, and E.M. Aboulhamid. Automatic test generation for efsm-based
systems. Technical report, 1043.

[116] F. C. Hennie. Fault detecting experiments for sequential circuits. In FOCS’64, pages 95–
110, 1964.

[117] M. Yannakakis and D. Lee. Testing finite state machines. In STOC, pages 476–485. ACM,
1991.

[118] G. Gönenç. Conformance testing methodologies and architectures for osi protocols. chap-
ter A method for the design of fault detection experiments, pages 368–375. IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1995.

[119] A. Gill. Introduction to the theory of finite-state machines. McGraw-Hill, New York, 1962.

[120] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng., 4:178–187, May 1978.

[121] W. Chung and P. Amer. Improved on UIO sequence generation and partial UIO se-
quences. Testing, and Verification, XII, Lake Buena Vista, June 1992.

[122] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Com-
puter Science (TCS), 34(1–2):83–133, nov 1984.

[123] R De Nicola. Extensional equivalence for transition systems. Acta Inf., 24:211–237, April
1987.

[124] E. Brinksma. A theory for the derivation of tests. Proc. 8th Int. Conf. Protocol Specification,
Testing, and Verification (PSTV VIII), pages 63–74, 1988.

[125] I. Phillips. Refusal testing. Theor. Comput. Sci., 50(3):241–284, 1987.

[126] E. Zinovieva. Symbolic Test Generation for Reactive Systems with Data. PhD thesis,
IRISA/INRIA Rennes, France, November 2004.

[127] A. W. Heerink. Ins and Outs in Refusal Testing. PhD thesis, University of Twente, Enschede,
May 1998.

[128] E. Brinksma and J. Tretmans. Testing transition systems: An annotated bibliography. In
F. Cassez, C. Jard, B. Rozoy, and M.D. Ryan, editors, MOVEP, volume 2067 of Lecture Notes
in Computer Science, pages 187–195. Springer, 2000.

[129] J. Tretmans. Testing techniques. 2002.

[130] R. Langerak. A testing theory for LOTOS using deadlock detection. In E. Brinksma,
G. Scollo, and C.A. Vissers, editors, Protocol Specification, Testing and Verification (PSTV),
pages 87–98. North-Holland, 1989.

[131] L. Briones and E. Brinksma. A test generation framework for quiescent real-time systems.
In IN FATES 04, pages 64–78. Springer-Verlag GmbH, 2004.

[132] S. Nogueira, A. Sampaio, and A. Mota. Guided Test Generation from CSP Models. In
Proceedings of the 5th international colloquium on Theoretical Aspects of Computing, pages 258–
273, Berlin, Heidelberg, 2008. Springer-Verlag.



BIBLIOGRAPHY 187

[133] A. W. Heerink and G. J. Tretmans. Refusal testing for classes of transition systems with
inputs and outputs. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors,
Proceedings of the IFIP TC6 WG6.1 Joint Intl. Conf. on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols (FORTE X) and Protocol Specification, Testing
and Verification (PSTV XVII), volume 107 of IFIP Conference Proceedings, pages 23–38, Lon-
don, 1997. Chapman & Hall.

[134] M. van Osch. Hybrid input-output conformance and test generation. In Klaus Havelund,
Manuel Núñez, Grigore Rosu, and Burkhart Wolff, editors, Formal Approaches to Software
Testing and Runtime Verification, volume 4262 of Lecture Notes in Computer Science, pages
70–84. Springer Berlin / Heidelberg, 2006.

[135] J.C Fernandez, C. Jard, T. Jéron, L. Nedelka, and C. Viho. Using on-the-fly Verification
Techniques for the Generation of Test Suites. Research Report RR-2987, INRIA, 1996.

[136] A. Sampaio, S. Nogueira, and A. Mota. Compositional verification of input-output con-
formance via csp refinement checking. In ICFEM ’09: Proceedings of the 11th International
Conference on Formal Engineering Methods, pages 20–48, Berlin, Heidelberg, 2009. Springer-
Verlag.

[137] M. Bonsangue, J. Rutten, and R. Silva. A kleene theorem for polynomial coalgebras. In In
Foundations of Software Science and Computational Structures, 12th International Conference,
FOSSACS 2009, volume 5504 of LNCS, pages 122–136, 2009.

[138] L. Briones, C. Pasareanu, and D. Giannakopoulou. Assume-guarantee reasoning with
ioco testing relation. In ICTSS, November 2010.

[139] J.A. Goguen and R.M. Burstall. Institutions: abstract model theory for specification and
programming. J. ACM, 39:95–146, January 1992.

[140] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–281,
1972. 10.1007/BF00289507.


	Introduction
	Context
	System modeling
	Validation and verification

	Thesis overview
	Thesis contributions
	Plan of the thesis


	I Theoretical preliminaries
	Category theory
	Category
	Category definition
	Constructions of categories
	Properties of arrows

	Universal properties
	Commutative diagrams
	Initial and terminal objects
	Product
	Coproduct
	Exponents

	Functors and natural Transformations
	Functors
	Powersets
	Free monoid
	Polynomial functors and Kripke polynomial functors
	The category of category

	Natural transformations
	Heterogeneous Compositions
	Functor categories
	Heterogeneous compositions


	Monads in category theory
	Definition
	A working example
	More examples
	Partial
	Ordered nondeterminism
	Exception

	Category of Kleisli


	Coalgebras
	Coalgebra definition
	Streams
	Mealy Machines
	Labeled Transition Systems (LTS)
	Input-Output Labeled Transition Systems (IOLTS)

	Morphisms
	Bisimulation
	Stream
	Mealy machines
	Labeled transition systems

	Final coalgebras
	Streams
	Mealy machines
	Labeled transition systems
	More examples

	Co-induction
	Proof by bisimulation



	II Systems modeling framework
	Generic components
	Components as coalgebras
	Motivation
	Components
	Genericity of component definition

	Component traces
	Transfer function
	Component Traces

	Results
	Final model
	Minimal component

	Conclusion

	Integration of components
	Basic integration
	Cartesian product
	Feedback

	Complex operators
	Sequential composition
	Double sequential composition
	Synchronous product
	Concurrent composition
	Synchronous parallel composition

	Systems and compositionality
	Systems
	Examples
	Compositionality

	Related works
	Conclusion


	III Validation of component-based systems by testing
	Conformance testing theory: a general overview
	Formal Method in Conformance Testing
	General principle
	The meaning of conformance
	Specification model
	Implementation model
	Conformance relation

	Formal framework for conformance testing
	Test execution
	Test case properties



	Testing of components
	Conformance relation
	Specification model
	Implementation model
	Conformance
	An overview
	Definition


	Finite computation tree
	Formal definition
	Unfolding algorithm

	Test Purpose
	Test generation guided by test purposes
	Preliminaries
	Inferences rules
	Example
	Properties

	Instantiating of the approach

	Integration Testing
	Compositional testing
	Compositional testing with cioco
	Compositionality for cartesian product
	Compositionality for feedback operators
	Compositionality for complex operator

	Test purposes for sub-systems
	Sub-systems and projection
	System-based test purposes

	Related works

	Conclusion
	Summary
	Future research

	Bibliography


